Нурали Латыпов - Бигуди для извилин. Возьми от мозга все!

Здесь есть возможность читать онлайн «Нурали Латыпов - Бигуди для извилин. Возьми от мозга все!» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: АСТ, Жанр: psy_personal, psy_social, Самосовершенствование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Бигуди для извилин. Возьми от мозга все!: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Бигуди для извилин. Возьми от мозга все!»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему умные люди на самом деле тупые? — Задает вопрос знаменитый интеллектуал Нурали Латыпов. Без постоянных упражнений даже самый умный человек теряет хватку и сообразительность. Автор предлагает всем, кто хочет оставаться в хорошей интеллектуальной форме целый набор увлекательных задач, своеобразных снарядов для умственного фитнеса.

Бигуди для извилин. Возьми от мозга все! — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Бигуди для извилин. Возьми от мозга все!», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

149В физике есть очень полезный принцип наименьшего действия. В частности, свет всегда распространяется по пути, требующему наименьшего времени (с учётом различий скорости движения света в разных плотных средах). Представим себе, что железная дорога — зеркало. Отразим в ней один из цехов. И соединим прямой, как движение света, линией это отражение с другим цехом. Точка пересечения линии с железной дорогой укажет, где расположить завод.

150Множители содержат все латинские буквы. Значит, один из них имеет вид (x — x). Очевидно, он равен нулю. Следовательно, равно нулю и всё произведение.

151Девять монет делим на три равные кучки по три монеты. Первые три монеты кладём на одну чашу весов, другие три монеты — на другую чашу весов. Если весы по-прежнему уравновешены, то среди этих шести монет нет фальшивой. Поэтому снимаем с весов шесть монет и приступаем к кучке, которую ещё не взвешивали. Берём произвольно из оставшихся трёх монет две и кладём на ту и другую чашу. Если весы снова находятся в равновесии, то оставшаяся девятая монета фальшивая. Если не находятся в равновесии, та, что более лёгкая — фальшивая. Если же весы не находятся в равновесии уже после первого взвешивания, значит, на одной из чаш среди трёх монет одна — фальшивая. Возьмём из более лёгкой кучки две монеты и положим на весы. Если весы снова находятся в равновесии, то оставшаяся монета из предыдущих трёх фальшивая. Если не находятся в равновесии, та, что более лёгкая — фальшивая.

152Говорят, что нижеследующее решение найдено перебором всех возможных вариантов. Их довольно много, но всё же можно все их просмотреть без помощи компьютера. Итак, прежде всего пронумеруем монеты. Для этого не обязательно что-то на них писать — достаточно лишь помнить, куда какую монету по ходу работы перекладывают. Для начала взвесим (1, 2, 3, 4) и (5, 6, 7, 8) монеты. Если левая чаша весов (с монетами 1, 2, 3, 4) тяжелее, то на шаге 2.1 взвешиваем (3, 8, 9) и (4, 6, 7) монеты. Если и тогда левая чашка тяжелее, то — последнее взвешивание 3.1 — (1, 7, 8, 9) и (2, 4, 5, 6). Вывод из этой ветви: если левая чашка тяжелее, то фальшивая монета с номером 6; если левая чашка легче, то фальшивая монета — 7; если на чашках равенство, то фальшивая монета — 3. Но если левая чашка во втором взвешивании легче, то последнее взвешивание 3.2 — (1, 7, 8, 9) и (2, 3, 5, 6), и тогда: если левая чашка легче, то фальшивая монета — 8; если на чашках равенство, то фальшивая — 4. Если же на чашках равенство во взвешивании 2.1, то — последнее взвешивание 3.3 — (1, 7, 8, 9) и (2, 3, 4, 6); тогда: если слева тяжелее, то фальшивая — 1; если слева легче, то фальшивая — 2, если на чашках равенство, то фальшивая — 5. Теперь вернёмся к первому взвешиванию, и если левая чашка легче, то взвешиваем — 2.2 — (3, 8, 9) и (4, 6, 7) монеты; тогда если левая чашка тяжелее, то последнее взвешивание (1, 7, 8, 9) и (2, 3, 5, 6), и при этом: если левая тяжелее, то фальшивая монета — 8; если равенство, то фальшивая — 4. Но если левая чашка во втором взвешивании легче, то последнее взвешивание (1, 7, 8, 9) и (2, 4, 5, 6); тогда, если слева тяжелее, то фальшивая — 7, если слева легче, то фальшивая — 6, если равенство весов, то фальшивая — 3. Если же во взвешивании 2.2 равенство, то последнее взвешивание (1, 7, 8, 9) и (2, 3, 4, 6), тогда: если слева тяжелее, то фальшивая — 2; если слева легче, фальшивая — 1; если равенство, фальшивая 5. Наконец, если в первом взвешивании равенство, то фальшивая — 9. И у нас есть в резерве взвешивание (даже два!), чтобы узнать, легче она или тяжелее, чем настоящая.

Однако, можно решить задачу и логически. Возьмём и разделим девять монет на три кучки по три монеты. Сравним вес любых двух кучек. Если эти две кучки равны по весу, то дальше всё просто. Берём ту кучку, что осталась и сравниваем с любой из ранее взвешенных. Так мы узнаём, что означает «фальшивость». Легче или тяжелее третья триада монет, чем первая или вторая. Осталось третье взвешивание. Кладём на чаши весов по одной монете из третьей кучки. Если весы уравновешены — оставшаяся вне весов монета фальшивая. Если весы не в равновесии — фальшива та монета, что либо тяжелее, либо легче (как это выявлено на втором взвешивании).

Но допустим, что при первом взвешивании первая порция из трёх монет не совпадает по весу со второй порцией из трёх монет. Снимем любые три монеты с чаши весов, на освободившуюся чашу положив ранее невзвешенные три монеты третьей порции. Если весы в равновесии, фальшивая монета осталась в той тройке монет, что мы сняли, и уже из первого взвешивания было видно, легче, или тяжелее фальшивая монета. Дальнейшее решение очевидно, оно приведено абзацем выше. Допустим, однако, что мы снова не угадали, и весы при втором взвешивании снова не в равновесии. Но это означает, что тройка монет, которая два взвешивания находилась на весах содержит фальшивую монету, а те монеты, которые мы снимали с весов — натуральные. Далее поступаем по аналогии. Кладём на чаши весов по одной монете из этой самой кучки. Если весы уравновешены — оставшаяся вне весов монета фальшивая. Если весы не в равновесии — фальшива та монета, что либо тяжелее, либо легче (как это выявлено при предыдущих двух взвешиваниях).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Бигуди для извилин. Возьми от мозга все!»

Представляем Вашему вниманию похожие книги на «Бигуди для извилин. Возьми от мозга все!» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Бигуди для извилин. Возьми от мозга все!»

Обсуждение, отзывы о книге «Бигуди для извилин. Возьми от мозга все!» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x