Так прошел месяц экспериментов. Каждый день по много часов, иногда до утра, Хьюбел и Визель сидели в лаборатории со своей кошкой и каким-нибудь очередным ее нейроном, меняя стеклышки в офтальмоскопе в попытках подобрать для этого нейрона подходящий стимул. И вот однажды, через девять часов записи, нервная клетка зрительной коры впервые разразилась пулеметной очередью импульсов: “Тр-тр-тр-тр-тр-тр-тр-тр!!!”
Это произошло не тогда, когда Хьюбел и Визель подобрали стеклышко с правильно расположенной точкой. Это случилось, когда они меняли одно стеклышко на другое. Край стеклышка отбросил тень. На сетчатку спроецировалась темная прямая линия. Это было именно то, чего хотела клетка зрительной коры.
Обнаружив эту тень от стеклышка, Хьюбел и Визель начали целенаправленно предъявлять кошке уже не отдельные точки – как выяснилось, не очень‐то интересные для нейронов на этом иерархическом уровне, – а линии разной ориентации. И сразу выяснилось, что наклон тоже критически важен. Клетка разряжается пулеметной очередью импульсов, когда кошке показывают темную вертикальную линию на светлом фоне (или вертикально проходящую границу между светлой и темной частью экрана). Та же клетка реагирует слабее, когда линия почти вертикальна, но наклонена (как часовая стрелка в 11 часов). Она абсолютно безучастна, если стрелка показывает на 10 часов. Зато где‐то рядом есть другая клетка, которая ценит именно линии, наклоненные таким образом, равнодушна к вертикальным и почти равнодушна к горизонтальным.
Смысл здесь в том, что клетка зрительной коры обобщает информацию от многих соседних клеток с off – или on -центрами. Это проще объяснить, если мы рассмотрим границу между светлой и темной половиной экрана.
Представьте, что у нас есть клетка с on -центром (то есть активная при виде светлого пятнышка на черном фоне). Если она анализирует информацию только от светлой части экрана и все подконтрольные ей фоторецепторы сетчатки получают свет, то она будет малоактивна – нет темной периферии, в которой клетка заинтересована. Рядом есть другая клетка с on -центром, которая анализирует только сигналы с темной стороны. Для нее условия работы тоже не оптимальны: темный фон есть, а светлых точек нет. Она тоже будет малоактивна. А еще у нас есть третья и четвертая клетки, у которых ситуация интереснее: их рецептивные поля попадают на границу между светом и тьмой. Здесь все зависит от того, с какой стороны они туда наползают и насколько сильно.
Если центр рецептивного поля полностью затемнен, а периферия (хотя бы частично) освещена, то это вообще подавит активность клетки с on -центром, это самая неестественная для нее ситуация, она совсем замолчит. И наконец, у четвертой клетки центр рецептивного поля освещен, а периферия (хотя бы частично) затемнена. Это оптимальные условия для ее работы, и активность ее будет максимальной. А связи между нейронами выплетены таким образом, чтобы клетка коры возбуждалась именно тогда, когда у одних ее подконтрольных клеток активность есть, а у других нету. Они, в свою очередь, получают информацию от фоторецепторов, расположенных рядом друг с другом в какой‐то конкретной области сетчатки. Соответственно, когда все сходится, клетка зрительной коры говорит: “Ага! Паттерн активности именно такой, как если бы тут проходила вертикальная граница между светлым и темным!” Ну вот конструктивно вся сеть выплетена так, чтобы она возбуждалась именно в этот момент.
А дальше – вы уже догадались – есть нейроны следующего уровня иерархии. Они обобщают информацию от многих клеток, которые зарегистрировали линии, расположенные под разными углами. Это позволяет сложить из линий, например, квадрат или букву М (а поскольку все нейронные сети укрепляются, если их постоянно использовать, то букву М большинству читателей этой книги распознать проще, чем букву מ). А параллельно в других таких же сетях происходит обработка цвета, движения, глубины [253] Обратите внимание, что картина на сетчатке двухмерная, а мир мы видим трехмерным. У мозга есть много способов воссоздать объемное изображение. Например, важную роль играет сопоставление стимулов, полученных от правого и левого глаза.
. Принципиально важно здесь то, что зрение совсем не похоже на фотографирование. Мы разбираем информацию на отдельные признаки, обрабатываем их независимо, а потом собираем картинку заново.
Может показаться, что больше всего это похоже на компьютерный алгоритм. На входе нужна определенная комбинация активирующих и подавляющих сигналов (нулей и единиц), чтобы клетка выдала собственный сигнал (ноль или единицу). Но в мозге все немного хитрее, потому что, как правило, важен не единичный сигнал, а частота импульсов. Базовые принципы этой архитектуры (во всяком случае, когда мы говорим о ранних этапах обработки зрительного сигнала) заданы генетически и формируются еще до рождения, но понятно, что индивидуальный опыт влияет на тонкие настройки системы, потому что усиливает одни синапсы и ослабляет другие. Помните котят, которые лишились способности видеть вертикальные или горизонтальные линии, потому что ничего такого не было в их жизненном опыте во время критического периода развития зрительной системы?
Читать дальше
Конец ознакомительного отрывка
Купить книгу