Третье преимущество автоассоциативных сетей в том, что они могут выполнять простой тип вычислений, известный как удовлетворение ограничений. Многие задачи, которые пытаются решить люди, относятся к разряду задач, в которых причину трудно отделить от следствия. В главе 1 я приводил пример о том, что мы определяем яркость поверхности, исходя из предположений об угле наклона, и вычисляем угол поверхности, исходя из предположений о ее яркости, при этом не зная наверняка ни того, ни другого. Многие подобные задачи относятся к сфере восприятия, языка и здравого смысла. Что я вижу – сгиб поверхности или ее край? Что я слышу – гласную [I] (как в слове pin) или гласную [е] (как в слове реп), произнесенную с южным акцентом? Стал ли я жертвой человеческой злобы или глупости? Подобные неоднозначные ситуации иногда можно разрешить, выбрав интерпретацию, которая была бы непротиворечивой относительно самого большого количества интерпретаций других неоднозначных ситуаций, если бы их все можно было разрешить одновременно. Например, если один звук речи позволяет интерпретировать слово либо как send, либо как sinned, а другой – либо как реп, либо как pin, я могу разрешить эту неопределенность, если услышу, как один и тот же говорящий произносит оба слова с одним и тем же гласным звуком. Я бы рассуждал следующим образом: видимо, говорящий имел в виду слова send и реп, потому что фраза send а реп («послать ручку») – единственный вариант, который не нарушает никаких ограничений. Если предположить, что это были слова sinned и pin, то получится sinned a pin (англ, «согрешил булавку»), фраза, которая нарушает правила грамматики и вероятной сочетаемости слов по смыслу; вариант send и pin исключается из-за другого ограничения: известно, что обе гласные были произнесены одинаково; вариант sinned и реп («согрешил» и «ручка») можно исключить, потому что он нарушает оба ограничения.
Подобные рассуждения займут много времени, если мы будем проверять все варианты сочетаемости по одному. Однако в автоассоциативной сети они заранее закодированы в связях, и сеть может оценить все варианты одновременно. Предположим, что каждая интерпретация – это модельный нейрон; один нейрон – для варианта sinned, еще один – для send, и т. д. Предположим, что пары узлов, интерпретации которых непротиворечивы, соединены с положительными весами, а пары узлов, интерпретации которых противоречат друг другу, – соединены с отрицательными весами. Возбуждение затронет всю сеть, и если все пройдет успешно, то мы получим состояние сети, при котором активным будет самое большое количество взаимно непротиворечивых интерпретаций. Хорошим сравнением здесь будет мыльный пузырь, который колеблется, принимая разнообразные яйцевидные и амебовидные формы из-за того, что притяжение соседних молекул заставляет его оставаться шарообразным.
Бывает, что у сети ограничений могут быть взаимно противоречивые, но одинаково стабильные состояния. Это отражение такого явления, как противоречивость целого: целостный объект, но не его части, может быть интерпретирован двояко. Если пристально смотреть на рисунок куба на странице 123 (куб Неккера"), в какой-то момент ваше восприятие перевернется: вам начнет казаться, что вы видите не верхнюю его грань (вид снизу), а нижнюю грань (вид сверху). Когда происходит целостный переворот, изменение затрагивает интерпретацию каждой из частей объекта. Каждая ближняя к нам грань становится дальней гранью, каждый внутренний угол становится внешним углом, и так далее. И наоборот: если вы намеренно постараетесь увидеть внешний угол как внутренний, то можно произвольно вызвать обратный переворот всего куба. Динамика этого отражена в схеме под рисунком куба. Узлы представляют интерпретации элементов куба, и интерпретации, не противоречащие друг другу в структуре трехмерного объекта, возбуждают друг друга, в то время как противоречивые интерпретации тормозят друг друга.
Четвертое преимущество связано со способностью сети автоматически делать заключения. Если бы мы подключили наш распознаватель (который направлял бы данные с группы входных узлов на узел принятия решений) к нашему принтеру (у которого был бы узел намерений, от которого сигнал разветвлялся бы на группу выходных узлов), то получили бы простейший демон подстановок – например, на букву «В» он бы реагировал тем, что печатал бы «С». Однако если обойтись без посредника и присоединить входные узлы непосредственно к выходным узлам, можно получить очень интересный результат.
Читать дальше
Конец ознакомительного отрывка
Купить книгу