Несложно представить, что эта сеть – одна из составляющих частей демона. Если нижний ряд модельных нейронов присоединить к краткосрочной памяти, то верхний нейрон будет определять, содержатся ли в краткосрочной памяти экземпляры символа В. А на странице 118 изображена сеть той части демона, которая записывает в память символ В 98.
Мы уже на пути к тому, чтобы создать из модельных нейронов условную цифровую вычислительную машину; но давайте немного отклонимся от курса и сделаем более биоморфный компьютер. Во-первых, мы можем сделать так, чтобы наши модельные нейроны следовали не классической логике, а нечеткой логике. Во многих сферах у людей нет однозначных убеждений касательно того, истинно данное суждение или ложно. Бывает так, что о предмете сложно сказать, принадлежит он к данной категории или нет, скорее можно говорить о том, что он более удачный или менее удачный пример данной категории. Возьмем категорию «овощи». Большинство людей согласятся с тем, что сельдерей – это полноценный овощ, а чеснок – не очень хороший пример.
А если верить администрации президента Рейгана, пытавшейся оправдать урезанное финансирование школьного питания, овощем можно считать даже кетчуп (хотя после обрушившейся на эту программу критики администрация была вынуждена признать, что кетчуп – не очень хороший пример). На концептуальном уровне мы воздерживаемся от однозначных заявлений о том, является ли данный предмет овощем или нет, и предпочитаем говорить, что этот предмет – более удачный или менее удачный пример овоща. На механическом уровне мы уже не утверждаем, что узел, представляющий «овощность», должен быть включен или выключен, а допускаем варьирование значения, которое может составлять от 0 (для камня) и 0,1 (для кетчупа) до 0,4 (для чеснока) и 1,0 (для сельдерея).
Мы можем также отказаться от произвольно выбранного кода, связывающего каждый концепт с бессмысленной последовательностью битов. Пусть каждый бит сам представляет какой-нибудь элемент концепта. Скажем, один будет представлять зеленый цвет, другой – наличие листьев, третий – хрусткость, и так далее. Каждый из этих узлов, представляющих свойства овощей, может быть присоединен с небольшим значением веса к самому узлу, представляющему овощ. Другие узлы, представляющие характеристики, которых у овощей нет (такие, как «магнитный» или «мобильный»), могут быть присоединены с отрицательными значениями веса. На концептуальном уровне чем больше качеств овоща есть у данного предмета, тем более удачным примером овоща является этот предмет. На механическом уровне чем больше узлов качеств овоща срабатывают, тем выше уровень активации узла, представляющего овощ.
Как только мы разрешим сети быть неточной, она сможет представлять разные степени очевидности и вероятности событий и принимать статистические решения. Предположим, что каждый узел сети представляет какую-то одну улику, доказывающую причастность дворецкого к преступлению (отпечатки пальцев на ноже, любовные письма, адресованные жене убитого, и так далее). Предположим, что верхний узел представляет вывод о том, что это сделал дворецкий. На концептуальном уровне чем больше у нас улик, указывающих на то, что убийство мог совершить дворецкий, тем выше будет вероятность того, что это действительно сделал дворецкий.
На механическом уровне чем больше у нас возбужденных узлов, обозначающих улики, тем выше будет уровень активации узла принятия решения. В сети мы можем реализовать различные статистические процедуры, сконструировав узел принятия решения таким образом, чтобы интегрировать в него вводы разными способами. Например, узел принятия решения может быть пороговым, как в случае со схемами четкой логики; это позволило бы принимать решение только тогда, когда вес доказательств превышал бы критическое значение (как принято говорить, когда вина доказана «вне всяких разумных сомнений»). Либо активность узла принятия решения может увеличиваться постепенно; степень уверенности с первыми немногочисленными уликами будет повышаться медленно, затем будет быстро нарастать по мере поступления все большего и большего их количества и выравниваться на этапе снижающегося эффекта. Именно эти два типа узлов предпочитают использовать разработчики нейронных сетей.
Читать дальше
Конец ознакомительного отрывка
Купить книгу