Альберт Эйнштейн также в детстве казался ущербным ребенком — частично из-за дислексии, проявляющейся в трудностях при разговоре и чтении.
«Он развивался в детстве медленнее обычного, — вспоминает его сестра Майя Винтелер-Эйнштейн. — У него были такие проблемы с речью, что окружающие боялись, научится ли он вообще говорить… Каждую фразу, которую он готовился произнести, даже самую простую, он долго повторял про себя, шевеля губами. Эта привычка сохранялась у него до семи лет».
Греческий язык юному Эйнштейну давался с таким трудом, что его учитель, не удержавшись, однажды воскликнул: «Ты никогда ничего не добьешься…». Позднее Эйнштейн был исключен из школы и завалил вступительный экзамен в колледж. Наконец, заканчивая свою дипломную работу на ученую степень бакалавра, он не смог получить ни места в научном учреждении, ни рекомендаций от своих профессоров. Вынужденный согласиться на низкооплачиваемую работу в швейцарском патентном бюро, Эйнштейн в свои двадцать пять, казалось, был обречен на жизнь посредственности.
Но на двадцать шестом году жизни Эйнштейн совершил неожиданное. Летом 1905 года он опубликовал свою специальную теорию относительности, содержавшую знаменитую формулу E=mc 2. Шестнадцать лет спустя он стал лауреатом Нобелевской премии и приобрел мировую известность. Даже сегодня, через 40 лет после кончины ученого, его вдохновенный взгляд, кустистые усы и копна седых волос для всех нас остаются квинтэссенцией образа, а его имя — синонимом выдающегося ума.
Что было у Эйнштейна и чего нет у нас?
Именно это хотел выяснить Томас Харвей. Доктор Харвей был дежурным патологоанатомом Принстонской больницы в тот день, когда в 1955 году скончался Эйнштейн. По чистой случайности судьба распорядилась так, что именно Харвею пришлось вскрывать тело Эйнштейна. Не заручившись разрешением семьи великого ученого, на свой страх и риск Харвей извлек и законсервировал его мозг и сорок лет слой за слоем изучал под микроскопом орган органов, хранящийся в растворе формальдегида. Какова же была его цель? Раскрыть секрет гения Эйнштейна.
«Никто до сих пор не выяснил, что отличает мозг гения от мозга обычного человека, — рассказывал позднее доктор Харвей журналистам. — …Нами руководила идея попытаться найти хоть что-нибудь…».
Самому Харвею так ничего и не удалось обнаружить, но вот одной из его коллег повезло больше. Изучив фрагмент мозга Эйнштейна, Мариан Даймон, нейроанатом при Калифорнийском университете в Беркли, в начале 80-х годов сообщила о потрясающем открытии, ведущем к революции в представлениях о человеческих способностях и гениальности.
Как сделать гения
Принято считать, что гением нужно родиться. А вот Мариан Даймон посвятила свою работу «выращиванию» гениев в лабораторных условиях. В своем впоследствии знаменитом эксперименте она поместила несколько крыс в обстановку, стимулирующую развитие: их клетки были наполнены качелями, лесенками, «беличьими колесами» и разнообразными игрушками. А другим крысам достались совершенно пустые клетки. В стимулирующей среде крысы не только дожили до трех лет (что соответствует примерно девяноста годам человека), но у них увеличились и размеры мозга. Между нервными клетками вырос целый лес новых соединений в форме дендритов и аксонов — тонких разветвленных структур, передающих электрические сигналы от одной нервной клетки ( нейрона ) к другой. Крысы, обитавшие в обычных клетках, умирали раньше. Их мозг имел значительно меньше межклеточных соединений, чем у стимулировавшихся собратьев, и в какой-то момент развитие животных останавливалось вовсе.
Еще в 1911 году отец нейроанатомии Сантьяго Рамон-и-Кахаль обнаружил, что количество соединений между нейронами ( синапсов ) является мерой гениальности, причем этот показатель оказывается более существенным, нежели общее число нейронов. Эксперименты, проведенные Даймон, показали, что «физический механизм гениальности» можно создать путем умственных упражнений, по крайней мере, у крыс.
Применим ли этот принцип к людям? Даймон пыталась найти ответ на этот вопрос. Она изучала фрагменты мозга Эйнштейна. Как и ожидалось, в левом полушарии ей удалось обнаружить повышенное число глиальных клеток. Даймон назвала этот нейрологический коммутатор «ассоциативной областью других ассоциативных областей мозга». Глиальные клетки служат «клеем», связывающим нервные клетки друг с другом; они способствуют передаче электрохимических сигналов между нейронами. Именно это и ожидала увидеть Даймон, уже наблюдавшая повышенную концентрацию глиальных клеток у подопытных крыс. Присутствие их большого количества и в мозгу Эйнштейна указывало на сходство процессов обогащения ими мозга.
Читать дальше