Шаг 2. Попросите этого человека вычислить сумму цифр и вычесть ее из оригинального числа.
Шаг 3. Попросите его умножить результат этих действий на другое произвольное трехзначное число.
Шаг 4. Попросите обвести кружком одну из цифр результата (любую, за исключением 0), а затем прочесть вам вслух остальные цифры — все, за исключением обведенной. После этого вы назовете этому человеку пропущенную цифру.
Если этот человек правильно выполнит все ваши указания, то сумма всех цифр, включая и обведенную цифру, будет кратной 9 (9, 18, 27 или 36). Приведем пример выполнения этого фокуса.
Шаг 1. Человек вводит в калькулятор трехзначное число (836).
Шаг 2. Он складывает цифры этого числа (8 + 3 + 6 = 17), а затем вычитает из него полученную сумму (836 - 17 = 819).
Шаг 3. Умножает получившееся число на другое произвольное трехзначное число (819 x 523 = 428 337).
Шаг 4. Обводит кружком одну из цифр получившегося числа — кроме нулей — и зачитывает вам все остальные цифры. Таким образом, если обведена цифра 2, он должен зачитать вам: «4, 8, 3, 3, 7». По мере того как он называет цифры, вы складываете их в уме (4 + 8 + 3 + 3 + 7 = 25). Следующее после 25 число, кратное 9, это 27, — а вы уже знаете, что сумма всех цифр результирующего числа должна делиться на 9; поскольку 25 + 2 = 27, недостающая цифра — 2.
Допустим, сумма цифр, которые зачитывает вам собеседник, и так уже кратна 9, как в случае 3 + 2 + 4 + 1 + 8 = 18. В этом случае недостающей цифрой может быть либо 0, либо 9 (18 + 9 = 27). Но вы заранее предупредили, что выбирать 0 нельзя, так что недостающая цифра — 9.
Чтобы успешно демонстрировать этот трюк, главное запомнить шаги, чтобы иметь возможность объяснить их слушателям, и уметь складывать в уме однозначные числа. Этого вполне достаточно.
Уже чувствуете себя гением?
Гении редко почивают на лаврах. Овладев всеми методиками и проделав все упражнения, представленные в этой книге, не успокаивайтесь; ищите новые способы развивать мозг и поддерживать его в форме. Не забывайте заходить на мой сайт (MikeByster.com), где постоянно появляются новые ссылки и видеозаписи.
Поддержание интеллектуальной формы требует постоянного внимания и работы. Бодибилдеры никогда не прекращают качать мышцы и следить за питанием; так и мы не можем позволить своему мозгу бездельничать. Есть хорошая новость: для того чтобы тренировать свой мозг и расширять его возможности, не нужно далеко ходить. Надеюсь, что я дал вам достаточно идей, которые можно использовать в повседневной жизни. И вам не требуются ни компьютер, ни партнер. Все, что нужно, — это ваш собственный думающий мозг и отработанные навыки, чтобы превратить любое повседневное занятие в приятный и не требующий усилий путь к самому себе — только более сообразительному, остроумному, мозговитому и блестящему.
Глава 9
Вопросы и ответы
Всякая всячина и еще несколько напоминаний в классическом стиле часто задаваемых вопросов
Живи так, будто завтра умрешь. Учись так, будто собираешься жить вечно.
Ганди
В этой завершающей главе я постараюсь ответить на некоторые вопросы, которые мне часто приходится слышать как от учащихся, так и от взрослых. Во многих ответах вы услышите отголоски информации, уже прозвучавшей в книге. Если у вас есть вопросы, на которые я не ответил, вы можете задать их на моем сайте.
В. Вы гений?
О. Это зависит от того, как вы определите понятие «гений». Я обращаю внимание на закономерности в мире чисел, которые большинство людей просто не замечает. Но мой подлинный дар — это способность учить других, способность передать людям навыки, которые позволяют им поражать друзей, развивать мозг и приобретать вкус к учению. Не нужно быть гением, чтобы освоить мою программу: это удается самым разным людям, как детям, так и взрослым — от инвалидов и отстающих в развитии до самых одаренных. Я считаю, что каждый человек — потенциальный гений.
В. Как вы придумываете свои математические уловки?
О. Я по природе своей вижу взаимосвязь чисел. Некоторые из моих приемов — результат долгой работы, проб и ошибок, тогда как другие приходят ко мне неожиданно (к примеру, во время просмотра телевизора). Некоторые способы быстрых вычислений, как оказалось, я придумал не первым, другие, как мне кажется, уникальны. Методы, предложенные в книге, представляют действительно альтернативный подход к решению задач. Алгоритмы быстрых вычислений не заменяют здравый смысл и умение решать задачи; они лишь помогают разглядеть закономерности. Способность замечать паттерны считается одним из признаков наличия когнитивных способностей.
Читать дальше
Конец ознакомительного отрывка
Купить книгу