Владимир Сурдин - Солнечная система (Астрономия и астрофизика)

Здесь есть возможность читать онлайн «Владимир Сурдин - Солнечная система (Астрономия и астрофизика)» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: М.: ФИЗМАТЛИТ, Жанр: Прочая научная литература. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Солнечная система (Астрономия и астрофизика): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Солнечная система (Астрономия и астрофизика)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вторая книга серии «Астрономия и астрофизика» содержит обзор текущего состояния изучения планет и малых тел Солнечной системы. Обсуждаются основные результаты, полученные в наземной и космической планетной астрономии. Приведены современные данные о планетах, их спутниках, кометах, астероидах и метеоритах. Изложение материала в основном ориентировано на студентов младших курсов естественно-научных факультетов университетов и специалистов смежных областей науки. Особый интерес книга представляет для любителей астрономии.

Солнечная система (Астрономия и астрофизика) — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Солнечная система (Астрономия и астрофизика)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

За исключением специального случая (когда скорость направлена точно к S или точно в противоположную сторону) орбиты оказались кривыми линиями. К тому же, движение по орбитам неравномерно. Самая большая скорость — в перицентре (ближайшей к S точке орбиты), и чем дальше от перицентра, тем она меньше. Наименьшая скорость в случае эллипса — в апоцентре (наиболее удаленной от S точке орбиты).

Дадим количественные соотношения. Расстояние r р от S до перицентра выражается через большую полуось а (среднее расстояние от движущегося тела до S ) и эксцентриситет е по формуле r p=а(1—е) . Расстояние r а от S до апоцентра r а=а(1+е) . Скорости в экстремальных точках (апсидах) эллипса составляют:

υ p=υ I(a)√(1+e)/√(1—e) и υ a=υ I(a)√(1—e)/√(1+e)

Здесь υ I(a) — круговая скорость на расстоянии от a до S . В свою очередь υ I убывает обратно пропорционально квадратному корню из расстояния до S : υ I=K/√r .

Между большой полуосью и периодом обращения существует связь, открытая еще И. Кеплером в начале XVII в.:

Р = 2π(а 3/2/K) (5)

Разумеется, выражение постоянной К через G и М — заслуга Ньютона.

Если эллипс близок к окружности, различие скоростей в разных точках орбиты невелико. У Земли в ее движении вокруг Солнца е=0,016 , υ p=31км/с , υ a=29км/с . У кометы Галлея эллипс очень вытянут: е=0,96 ; так что υ p=51км/с , υ a=1км/с . Такой характер ускорений и замедлений на орбите понять легко, если воспользоваться аналогией с вращением грузика на стержне вокруг горизонтальной оси. Внизу скорость наибольшая, наверху — наименьшая. В нашей задаче «вниз» — это направление к притягивающему центру, «вверх» — прочь от него. Причина изменений скорости и для планеты, и для маятника одна: закон сохранения энергии. «Наверху» потенциальная энергия гравитации максимальна, «внизу» — минимальна. Для кинетической энергии соотношение противоположно.

Набор орбит оказался небольшим. В век космонавтики мы можем выбирать высоту или период обращения искусственных небесных тел в широких пределах, но в силу (5) по отдельности, а не вместе. Наименьший период обращения ИСЗ — полтора часа — соответствует круговой орбите минимальной высоты. Максимального периода теоретически нет, но подавляющее большинство ИСЗ имеют период не более 24 час.

Притяжение и форма небесных тел

Многие искусственные спутники Земли (ИСЗ) летают низко, почти царапая Землю: в масштабе школьного глобуса (1:50000000) не далее сантиметра от него. Тут уж даже Землю шаром считать нельзя, хоть на глазок это и незаметно. А вот Юпитер и особенно Сатурн обладают отчетливо видимым сжатием. Одним словом, чтобы идти дальше, надо разобраться с формой небесных тел и их притяжением.

Начнем с последнего. Пусть нам известна форма и строение протяженного небесного тела Т . Как определить силу тяготения, с которой Т притягивает какую-либо частицу Q ? Перейдем к ускорению — оно не зависит от массы пробной частицы (уникальное свойство гравитационного поля, открытое Г. Галилеем). Поэтому можно считать, что Т создает вокруг себя (и в себе самом тоже) поле ускорений, математически точное описание гравитационного поля. Как найти его? Разобьем мысленно Т на столь малые кубики, чтобы их размерами можно было бы пренебречь по сравнению с расстоянием до Q (рис.5).

Рис5 Вектор ускорения w s сообщаемого Q со стороны s гo кубика равен - фото 7

Рис.5

Вектор ускорения w s , сообщаемого Q со стороны s -гo кубика, равен согласно (1)

w s=—(Gm s/r s 3) r s (6)

Поясним, откуда взялся минус и куб в знаменателе. Модуль ускорения равен Gm s/r s 2 , и он умножен на единичный вектор r s/r s направления от массы m s к точке Q (рис.5). Полное ускорение равно векторной сумме (6) по всем кубикам. Разумеется, так получается приближенная величина. Чтобы вычислить точную, нужно перейти к пределу, устремляя ребро кубика к нулю. В пределе получим тройной интеграл по телу Т . С помощью хорошего компьютера интеграл взять нетрудно. Но ведь даже для данного тела его нужно считать в огромном количестве точек пространства. Чаще всего идут другим путем. Как уже говорилось, Ньютон сумел вычислить интеграл для шара со сферическим распределением плотности и убедился, что внешние частицы шара притягивают в точности как материальная точка той же массы, помещенная в его центре. А дальше П.-С. Лаплас предложил следующую схему определения гравитационного поля Т . Во-первых, проще вместо векторного поля ускорений иметь дело со скалярным полем гравитационной потенциальной энергии Е р единицы массы Q . Оба поля однозначно определяют друг друга. Во-вторых, представим поле в виде ряда, т.е. суммы бесконечного числа слагаемых:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Солнечная система (Астрономия и астрофизика)»

Представляем Вашему вниманию похожие книги на «Солнечная система (Астрономия и астрофизика)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Солнечная система (Астрономия и астрофизика)»

Обсуждение, отзывы о книге «Солнечная система (Астрономия и астрофизика)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x