Так весной 2019 года Руслан Тимурович Магдиев предложил Артёму Семидетнову совместную работу, являющуюся продолжением его собственной школьной научной работы под названием «Геометрия геодезических в дискретной группе Гейзенберга», которая относится к теории групп и римановой геометрии. Участие в подобном исследовании предполагает серьезные теоретические пререквизиты, и даже для понимания постановки задачи от ребёнка требуется знание основ теории групп. Необходимую теоретическую базу Артем получил в Летней математической школе, прослушав курсы «Введение в теорию групп» и «Введение в геометрическую топологию». Знания, обретенные Артёмом на первом из них, позволили ему ознакомиться с результатами, полученными в прошлом Русланом Тимуровичем, и приступить к изучению более широкого класса объектов. Навыки работы с римановыми многообразиями, обретенные на занятиях по геометрической топологии, в будущем позволили Артёму обнаружить новый подход к описанию рассматриваемых объектов. Перечислим несколько понятий, которые были использованы в научном исследовании Артёма и были отработаны на семинаре «Геометрическая теория групп»: задание групп образующими и соотношениями, нильпотентные и разрешимые группы, дискретные изопериметрические задачи, римановы многообразия, однородные и изотропные геометрии, группы Ли.
Стоит выделить исследование десятиклассника Петра Баринова «Структура сингулярных обобщенных функций с точечными носителями», выполненное под руководством Петра Алексеевича Куликова:
«Математическая физика изучает решение дифференциальных уравнений высших порядков. В частности, если рассмотреть линейный дифференциальный оператор, то подобрав нужные коэффициенты он может стать, например, оператором Лапласа. Мы изучили поведение решения линейного дифференциального уравнения на прямой при условии, что у решения есть не более чем степенная особенность в нуле. А именно, мы нашли другое решение для этого дифференциального оператора, которое не имеет особенностей, и нашли его связь с первым решением».
Необходимая теоретическая база осваивалась в течение всего 2019 года на следующих семинарах ЛНМО: «Теория меры и категорий», «Дифференциальные уравнения», «Функциональный анализ». Перечислим некоторые понятия, использованные в итоговой научной статье: дифференциальные уравнения, ряды Фурье, обобщенные функции и их регуляризация, меры Лебега и Стилтьеса.
Подбор исследовательских задач
Исследовательские задачи, которые предлагаются детям, должны быть таковы, что задача
– частично решена научным руководителем, при этом содержит части без какого-либо известного решения;
– доступна для ребёнка, то есть должна быть уверенность в том, что некоторая элементарная исследовательская работа может быть сделана.
– зачастую задача предполагает изучение новой теории.
Например, на семинаре «вычислительная геометрия» под руководством Бориса Алексеевича Золотова было проведено исследование, основанное на одной из задач олимпиады «Математика НОН-СТОП»:
«Существует много различных характеристик фигур на плоскости, таких как диаметр и площадь, но можно заметить, что среди них нет ни одной простой и хорошо изученной характеристики, которая могла бы отличить широкие и длинные фигуры от фигур, которые такими не являются. Поэтому я изучила новую характеристику фигур на плоскости, которая называется миаметр».
Автор итогового решения (Дойникова Екатерина, ученица 8 класса) на Балтийском научно-инженерном конкурсе получила Диплом II степени и Специальную премию с работой «Миаметры». Другому ученику Бориса Алексеевича (Пакульневичу Константину, 9 класс) на основе знаний, полученных по результату прохождения курса «топология» ЛМШ, для некоторого специального класса объектов удалось улучшить передовой геометрический алгоритм, который обсуждался на семинаре «Вычислительная геометрия»:
«Работа основана на теорема Александрова и алгоритме Чена-Хана. Теорема Александрова дает достаточные и необходимые условия существования выпуклого многогранника (причем единственного) для заданной развертки. Из квадратов можно составить бесконечно много развёрток, удовлетворяющих условиям теоремы Александрова. Однако некоторые из этих развёрток оказываются изоморфны – а именно, что им соответствует один и тот же многогранник, с точностью до гомотетии. Более того, с использование формулы Гаусса – Бонне несложно показать, что у каждого многогранника, получаемого при склейке квадратов, будет не более восьми вершин. В результате работы построен алгоритм проверки изоморфности склеек из квадратов. Алгоритм расширен для других правильных многоугольников».
Читать дальше