Это ограничение стало исчезать с появлением позитронно-эмиссионной томографии (ПЭТ), одного из первых методов трехмерной функциональной нейровизуализации. В противоположность чисто структурным методам ПЭТ и другие функциональные методы позволяют нейробиологам получать изображения мозга в действии. Появившаяся в 1980-х ПЭТ регистрирует метаболизм мозга, точнее, мозговой крово
ток, для чего в кровь вводят специальные вещества — радиоактивные маркеры. Лежащий в основе метода принцип заключается в том, что клетки мозга, активируясь, требуют больше энергии в виде глюкозы и кислорода. Маркером обычно служит небольшая доза глюкозы, помеченной радиоизотопом. Ее вводят непосредственно в вену либо вдыхают. Глюкоза движется к наиболее активным клеткам мозга, и там радиоактивный изотоп излучает позитроны, которые регистрируются и проявляются в качестве светящихся горячих точек на ПЭТ-изобра- жении. Хотя ПЭТ может служить для изучения мозга в процессе реакций человека на стимулы и выполнения задач, ученые предпочитают использовать для этого фМРТ, поскольку она обладает более высоким пространственным и временным разрешением и не требует использования радиоактивного материала (6).
Функциональная МРТ опирается на тот факт, что все, что человек переживает (чувствует, думает, воспринимает), в целом коррелирует с изменениями потребления кислорода и локального кровотока в определенных участках мозга. Когда человек реагирует на задание, например смотрит на фотографии или решает математическую задачу, как правило, в его мозге активируется конкретный набор специализированных областей, и они получают больше насыщенной кислородом крови. Усиление кровотока и связанное с ним увеличение притока кислорода служат здесь признаками повышенной активности нейронов. Мы говорим о «повышенной активности», поскольку весь живой мозг постоянно находится в работающем состоянии, кровь постоянно циркулирует, и кислород постоянно потребляется. Если мозг находится в полном покое — это мертвый мозг.
Таким образом, измерение концентрации кислорода, растворенного в крови, служит ключом к выявлению активности мозга. С помощью большого и чрезвычайно мощного магнита МР-томографа можно измерить приток крови к различным областям мозга, поскольку кровь, которая переносит больше кислорода, отличается по своим магнитным свойствам от крови, которая уже отдала свой кислород нейронам. Относительная концентрация насыщенной кислородом (оксигенированной) и бедной кислородом (то есть деоксигенированной) крови в небольшой области мозговой ткани создает так называемый BOLD-сигнал ( blood-oxygen-level-dependent, то есть «зависящий от уровня кислорода в крови»). Чем выше в определенной области мозга доля оксигенированной крови по отношению к деоксигенированной, тем выше в ней потребление энергии (7).
В экспериментах исследователи не просто просят испытуемых выполнить какие-нибудь задания и измеряют активность их мозга. Они оценивают активацию мозга непосредственно в процессе выполнения задания, например когда испытуемые реагируют на предъявляемые лица, и сравнивают эту активность с фоновой — например, когда испытуемый закрывает глаза и пытается очистить свое сознание насколько это возможно. Представьте себе эксперимент, спланированный, чтобы определить области мозга, связанные с чтением вслух. Исследователи сначала просят испытуемых читать буквы, которые появляются на экране, сперва про себя, а затем вслух. Предполагается, что если «вычесть» сигнал, возникающий в момент, когда испытуемый читает про себя, из сигнала, полученного во время чтения вслух, то оставшиеся неперекрывающиеся по двум заданиям области, по всей вероятности, будут связаны с произнесением слов вслух. Области мозга, задействованные при выполнении обоих заданий (например, внимание, зрительная обработка букв и внутренняя речь), пе- рекроются и останутся темными на итоговой карте активации.
В ходе таких экспериментов компьютер томографа получает BOLD- сигнал для каждой из крошечных трехмерных единиц объема, называемых вокселами — гибридный термин, полученный из английских слов volume (объем) и pixel (растровая точка, пиксел). Типичный мозг содержит около 50 000 таких вокселов, каждый со стороной примерно 3 мм. Процедура вычитания, которую мы описали выше, происходит на уровне каждого отдельного воксела. Каждый воксел окрашивается в определенный цвет в зависимости от величины разницы между его активациями в экспериментальном и в контрольном условии.
Читать дальше