Вершинин и Негердус предлагают также самовращающееся очистное устройство с дополнительными участками щеток для чистки внутренней поверхности трубопроводов [15] со значительным по толщине слоем отложений (Рис. 22). Данное устройство позволяет повысить производительность очистки и степень надежности работы устройства при очистке трубопроводов от значительного по толщине слоя отложений.
Агишев, Самматов и Муров предлагают устройство для очистки внутренней поверхности крутозагнутых участков трубопроводов [16] (Рис. 23, 24):
Рис. 23.Очистное устройство для прохождения крутозагнутых участков трубопровода, где 1 – общая ось в виде троса; 2 – щетка; 3 – щетинки; 4 – наружные пряди троса; 5 – уплотнительные манжеты; 6 – втулки; 7 – рамы; 8 – скрутка.
На общей оси в виде троса соосно размещены щетка 2 упругие шарообразные уплотнительные манжеты 5. Наружные пряди 4 троса 1 размещены спиралеобразно на поверхности манжет 5. При перемещении вдоль трубопровода потоком среды устройство поворачивается вокруг своей оси. Благодаря гибкости троса устройство проходит крутозагнутые участки трубопровода.
Использование предлагаемого устройства, по мнению авторов, позволят повысить эффективность очистки нефтепромысловых трубопроводов с гнутыми участками и крутыми поворотами.
Рис. 24.Сечение по А – А на Рис. 23,где 1 – трос; 3 – щетинки; 4 – наружные пряди троса.
Для очистки трубопроводов с высокой степенью загрязнения Каган, Журавлев, Плюснин и Чистяков предлагают устройство [17], которое состоит из цилиндрического корпуса 1 и уплотнительной надувной оболочки 2, выполненной в виде рукава из эластомера с самоуплотняющейся кромкой 3 (Рис. 25).
Внешняя контактирующая с трубопроводом поверхность оболочки снабжена скребковыми элементами 4 в виде стальной щетки. Устройство помещают в очищаемый трубопровод и подают рабочую жидкость или газ, то есть создают за ним избыточное давление Р, под действием которого устройство перемещается, разрушая скребками 4 (участок L 1) отложения на стенках трубопровода. В случае наличия более интенсивных отложений давление за устройством повышается, и оболочка 2, преодолевая сопротивление пружины 6, частично выворачивается, вводя в работу дополнительные скребки 7 (участок L 2).
Рис. 25. Конструкция саморегулирующегося очистного устройства, где. 1 – цилиндрический корпус; 2 – надувная оболочка; уплотняющая кромка; 4 – скребковые элементы; 5 – стакан; 6 – пружина; 7 – дополнительные скребки; 8 – наружная часть оболочки; 9 – канал; 10 – рукав; 11 – сопла.
При очень высокой степени загрязнения, когда давления не хватает для перемещения устройства, происходит раздувание оболочки до полного выхода стакана 5. При этом открываются боковые отверстия (сопла) 11 (Рис. 26), и рабочая среда, вытесняясь из них, производит дополнительные гидромониторные разрушения отложений, что значительно повышает проходимость поршня по трубопроводу. После прохождения такого участка пружина 6 возвращает внутреннюю ветвь оболочки 10 в исходное положение, при этом происходит самоочистка скребков 7.
Рис. 26.Схема работы основных очистных элементов устройства.
Рис. 27.Схема работы всех очистных элементов (включая дополнительные).
Адаптивность устройства заключается в том, что при различной интенсивности отложений в трубопроводе оно способно к саморегуляции режима движения и очистки.
Очистные устройства, оснащенные магнитами
Для обеспечения возможности обнаружения очистных устройств при больших глубинах залегания трубопровода, в местах, где рельеф местности не позволяет укладывать трубопровод близко от поверхности земли, а также для проведения очистки внутренней полости трубопровода от ферромагнитного мусора очистные устройства оснащаются магнитами.
Читать дальше