Но поскольку разные клетки требуют изолирования разных областей (в конце концов, мы же хотим, чтобы кератин экспрессировался в клетках, производящих волосы), можно заключить, что самой по себе ДНК-последовательности еще недостаточно для формирования изолятора. Подобные изоляторы (инсуляторы) создаются путем комплексных и зависящих от конкретной ситуации взаимодействий между геномом и комбинациями белков, экспрессируемых клеткой в данный момент.
Один из самых важных таких белков экспрессируется почти повсеместно. Будем называть его 11-FINGER [41] Официальное его название — CTCF.
. Это крупный высококонсервативный белок с характерной структурой. Складываясь в трех измерениях, он образует 11 пальцеобразных отростков (finger — от англ, палец), торчащих из него. Каждый из этих 11 пальцев может распознавать определенную ДНК-последовательность, однако не все пальцы умеют распознавать одну и ту же.
Представьте себе одиннадцатипалого пианиста. На нем шерстяные перчатки. Шерсть на каждом перчаточном пальце окрашена в один из четырех цветов. Каждая клавиша пианино также окрашена в один из четырех цветов, причем распределение окраски случайно. Правила таковы: пианист может извлекать любую ноту, какую ему заблагорассудится, но всегда должен одновременно нажимать от 2 до 11 клавиш, причем цвета перчаточных пальцев и цвета клавиш должны совпадать. Похоже, тут возможно несметное количество комбинаций. А теперь представьте, что у инструмента не десятки, а тысячи клавиш.
Вот и белок 11-FINGER способен связываться со множеством различных геномных последовательностей аналогичным образом. Он может присоединяться к десяткам тысяч мест (сайтов связывания) в человеческих клетках. Он прикрепляется не только к ДНК: 11-FINGER связывается и с белками. Представьте себе, что у нашего многопалого пианиста на тыльной стороне перчаток липучки, которые могут соединяться с пушистыми шариками. Цветные пальцы молотят по клавишам, а тыльная сторона кистей понемногу покрывается шариками.
Так и обстоит дело с белком 11-FINGER. Пальцеобразные выступы связываются с ДНК, а другие поверхности белка соединяются с белками. Конкретная картина связывания будет зависеть от конкретного набора белков, экспрессируемых клеткой. Один из белков способен менять характер скручивания ДНК, что может играть важную роль в контролировании генетической экспрессии 3. Другой белок добавляет определенные эпигенетические модификации 4. В некоторых областях разновидности геномных «незваных гостей» служат изоляторами, которые препятствуют распространению активирующих или подавляющих эпигенетических модификаций из одной области в другую 5.
Некоторые тРНК-гены могут выступать как инсуляторы. Они способны мешать процессу, в ходе которого экспрессия одного гена вызывает неподобающую экспрессию соседнего. Это еще одно преимущество обладания большим количеством тРНК-генов, показывающее, сколь экономно эволюция обычно распоряжается своим сырьем.
Схематически эти процессы показаны на рис. 13.2. Классический ген, кодирующий белок, покрыт эпигенетическими модификациями, усиливающими экспрессию этого гена. Фермент, который связывается с геном и копирует его в РНК (которая в конечном счете будет должным образом обработана для создания из нее зрелой информационной РНК), иногда может вести себя как неуправляемо катящийся поезд: начав копирование, он обычно уже не хочет останавливаться. Если поблизости окажется еще один ген, кодирующий белок, фермент может и его скопировать. Но если между генами два или больше тРНК-генов, такого не произойдет. Заметим, что тРНК-гены почти все время пребывают во включенном состоянии, поскольку они участвуют в создании всех белков. Существует фермент, копирующий тРНК-гены для создания тРНК-молекул на основе ДНК-матрицы. Однако это не тот фермент, который выполняет схожую работу, производя молекулы информационной РНК на основе классических генов, кодирующих белки. Фермент, создающий молекулы тРНК, ведет себя как здоровенный вышибала, не позволяющий другому ферменту войти и добраться до ближайшего гена. А поскольку фермент, копирующий тРНК-гены, не может связываться с классическими генами, кодирующими белки, общая генетическая экспрессия в этой области все время остается под жестким пространственным контролем 6.
Рис. 13.2.Фермент, который копирует ДНК генов, кодирующих белки, в информационную РНК, связывается с отмеченным звездочкой местом в начале гена А. Если его не остановят, фермент может продолжать копирование, пока не скопирует и кодирующий белок ген В в информационную РНК (скорее всего, копирование гена В при этом совсем не требуется). тРНК-гены копируются с ДНК на действующие молекулы тРНК при помощи другого фермента. Это останавливает работу фермента, создающего информационную РНК на основе гена А, и предотвращает неправильное использование гена В.
Читать дальше
Конец ознакомительного отрывка
Купить книгу