Самое важное отличие ньютоновской физики от эйнштейновской при ответе на вопрос, как движение наблюдателя влияет на наблюдение пространственно-временных положений, заключается в том, что в специальной теории относительности утверждение, что два удаленных друг от друга события произошли одновременно, не имеет абсолютного смысла. Один наблюдатель может видеть, что двое часов одновременно бьют полдень; другой наблюдатель, движущийся относительно первого, обнаруживает, что одни часы пробили полдень раньше или позже других. Как уже отмечалось выше, из-за этого ньютоновская теория гравитации, как впрочем и любая аналогичная теория тяготения, несовместима с специальной теорией относительности. Ньютоновская теория утверждает, что в любой момент времени сила притяжения, действующая со стороны Солнца на Землю, зависит от того, где в этот момент находится Солнце. Возникает вопрос: в этот же момент относительно чего?
Естественный способ исправить положение заключается в отказе от старой ньютоновской идеи о мгновенном действии на расстоянии и замене этой идеи картиной сил, обусловленных полями . В такой картине Солнце не притягивает Землю непосредственно; оно создает в окружающем пространстве поле, называемое гравитационным, которое затем оказывает силовое действие на Землю. Может показаться, что такое отличие не составляет большой разницы, но на самом деле разница огромная: когда, например, на поверхности Солнца возникает протуберанец, он сначала оказывает влияние только на гравитационное поле вблизи Солнца, после чего это небольшое изменение поля начинает распространяться в пространстве со скоростью света, как рябь на поверхности воды от брошенного камешка, достигая Земли примерно через восемь минут. Все наблюдатели, движущиеся с любой постоянной скоростью, согласны с таким описанием, так как в специальной теории относительности все наблюдатели измеряют одну и ту же скорость света. Подобным образом электрически заряженное тело создает поле, называемое электромагнитным, действующее посредством электрических и магнитных сил на другие заряженные тела. Когда электрически заряженное тело внезапно приходит в движение, электромагнитное поле меняется сначала только вблизи тела, а затем это изменение поля распространяется со скоростью света. На самом деле в этом случае изменения электромагнитного поля и есть то, что известно нам как свет, хотя это может быть свет такой большой или маленькой длины волны, которая недоступна нашему зрению.
В рамках доквантовой физики специальная теория относительности Эйнштейна хорошо согласовывалась с дуалистичной картиной природы: есть частицы, например электроны, протоны, нейтроны в обычных атомах, и есть поля – гравитационное или электромагнитное. Развитие квантовой механики привело к значительно более единой картине. С точки зрения квантовой механики энергия и импульс поля (например, электромагнитного) распространяются в виде сгустков, называемых фотонами, которые ведут себя как частицы, хотя и не имеющие массы. Аналогично, энергия и импульс гравитационного поля переносятся в виде сгустков, называемых гравитонами [103], также ведущими себя как частицы с нулевой массой. В длинно-действующем силовом поле вроде гравитационного поля Солнца мы не наблюдаем отдельных гравитонов главным образом потому, что их чрезвычайно много.
В 1929 г. Вернер Гейзенберг и Вольфганг Паули, основываясь на более ранней работе Макса Борна, Гейзенберга, Паскуаля Йордана и Юджина Вигнера, объяснили в нескольких статьях, каким образом массивные частицы, такие как электрон, могут рассматриваться как сгустки энергии и импульса в полях разного типа, например электронном поле. Точно так же, как электромагнитная сила между двумя электронами возникает в рамках квантовой механики в результате обмена фотонами, так и сила между фотонами и электронами порождается обменом электронами. Различие между материей и силой в значительной степени исчезает: каждая частица может играть роль пробного тела, на которое действуют силы, но эта же частица, участвуя в обмене, может порождать другие силы. В наши дни общепринято считать, что единственный способ, позволяющий объединить принципы специальной теории относительности и квантовой механики, достигается в квантовой теории поля или в подобной теории. Это и есть та самая логическая жесткость, которая придает красоту истинно фундаментальной теории: квантовая механика и специальная теория относительности почти несовместимы и их союз в рамках квантовой теории поля накладывает сильные ограничения на возможные способы взаимодействия частиц друг с другом.
Читать дальше