Youri Kraskov - The Wonders of Arithmetic from Pierre Simon de Fermat

Здесь есть возможность читать онлайн «Youri Kraskov - The Wonders of Arithmetic from Pierre Simon de Fermat» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Прочая научная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Wonders of Arithmetic from Pierre Simon de Fermat: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Wonders of Arithmetic from Pierre Simon de Fermat»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book shows how the famous scientific problem called "Fermat Last theorem" (FLT) allows us to reveal the insolvency and incapacity of science, in which arithmetic for various historical reasons has lost the status of the primary basis of all knowledge. The unusual genre of the book was called "Scientific Blockbuster", what means a combination of an action-packed narrative in the style of fiction with individual fragments of purely scientific content. The original Russian text of this book is translated into English by its author Youri Kraskov.

The Wonders of Arithmetic from Pierre Simon de Fermat — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Wonders of Arithmetic from Pierre Simon de Fermat», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The announced competition to prove the Beal conjecture does not allow us to clarify the solution of this problem in this book, because it can cause a real stir in the scientific world. Despite the simplicity of the proof of this conjecture, its consequences will be a loud sensation, since they will allow us really to get the simplest proof of the FLT. On the other hand, this will be too modest a result for the Beal conjecture, because its scientific potential is incomparably more powerful and impressive. To fix this situation to the best, this book will offer a more meaningful formulation of this problem, which called here the Beal Theorem, that not only confirms the correctness of conjecture, but also opens up the possibility of solving the equation A x+B y=C zfor any natural powers except the case x=y=z>2.

As for the Wiles’ FLT “proof”, it rests only on the Gerhard Frey’s idea, where again (for the umpteenth time in the past 350 years!) an elementary error was made!!! In this case, if something has been proven it is the complete inability of science to notice such errors, which must be teaching by schoolchildren. As a result, these events took place in such a way that on the FLT problem and its generalization in the form of the Beal conjecture, science once again became a victim of misunderstandings i.e. the current situation with the solution of the FLT problem is no better than the one that was 170 years ago, when the German mathematician Ernst Kummer provided proof of the FLT particular cases for prime numbers from the first hundred of the natural numbers.

With a such amount of knowledge available to current science, its helpless state seems as something irrational and even unthinkable. Nevertheless, it permeates whole of it through and far from only the FLT problem, but also in general wherever you poke, the same thing happens everywhere – science shows its inconsistency so often and in so many questions that they simply cannot be counted. The only difference is that some of them still find their solution, but with the FLT science has been stuck for centuries. However, the greatness of this problem lies in the fact that it, apart from purely methodological difficulties, points to some aspects of a fundamental nature, which have such a powerful potential that, if it succeeds in uncovering of it, science will be able to make an unprecedented breakthrough in its development.

Fermat paid attention to this aspect and was the first to notice even then, that science had no roots to support it as a whole. Simply put, the logical constructions used in solving specific problems do not have a solid support that determines the way, in which each separate branch of knowledge exists. If there is no such support, then science has no protection from the appearance of all kinds of ghosts taken as real entities. The Basic or as it is also called Fundamental Theorem of arithmetic is a vivid for it example. It would seem, what is simpler, one needs only to accept as an unchangeable rule that the numbers can be either natural ones or derived from them. Anything that does not obey this rule cannot be a number. Given that arithmetic is the only science that no other science can do without, it can be stated that all science cannot do without BTA at all! But science itself is not even aware of the fact that BTA is still not proven. And how do you think why? … This is because science simply does not know what is a number!!!

Even to people far from science, this obvious fact can make a shocking impression. Then the question obviously arises: if science does not know even this, then what can it generally know? In this book we’ll explain what the difficulty is here and suggest a solution to this problem. This immediately draws the need for axioms and basic properties of numbers, which were also previously known, but in a very different understanding. After the definition the notion of number and axiomatics, proof of the BTA is required, since otherwise, most of the other theorems simply could not be proven.

As can be seen from this example, if a fundamental definition the concept of a number is given, then immediately a need appears to build an initial system defining the boundaries of knowledge, in which it can develop. It’s like by musicians, if there is an initial melody, then the composer can create a complete work of any form and type from it, but if there is no such melody then there cannot be any music at all. In this sense, science is a very large lot of different melodies piled up into a one bunch, in which science itself is completely entangled and stuck.

But if science is built within the framework of the system laid down in it initially, then it will be as an unaffordable luxury a situation, when each individual task will be solved only by one method found specifically for it. The same problem took place in the days of Fermat, but for some reason besides him no one then bothered with it. Perhaps therefore, the tasks that he proposed looked so difficult, that it was not clear not only how to solve them, but even from which side to approach to them.

Take for example only one of Fermat’s tasks, at the solution of which the great English mathematician John Wallis turned out properly to calculate the required numbers and even get praise from Fermat himself, any his task in that time nobody could solve. However, Wallis could not prove that the Euclidean method, applied by him, will be sufficient in all cases. A whole century later, Leonard Euler took up this problem, but he was also unable to bring it to the end. And only the next royal mathematician Joseph Lagrange had finally received the required proof. Even after all these titanic efforts of the great royal trinity, for some reason it remained unattended Fermat's letter, where he reported that the task is solved without any problems by the descent method, but how, nobody knows up to now!

In order to show how effective the descent method may be, in this book in addition to the proof of BTA, it was also restored proof by the same Fermat's method a theorem about the only solution of the equation y 3= x 2+ 2 in integers, which could not be proven until the end XX century when André Weil has make it, but by another method and again of the same Fermat. If the problem proposed to Wallis had also been solved by descent method then the three greatest mathematicians, close to the Royal courts, would not have to work so hard. However, the result that they were able to achieve, may sink into oblivion due to excessive difficulties in understanding it and then all this gigantic work will slowly bypass the manuals as had already happened with the Cauchy proof of the Fermat’s Golden theorem, about which it will also be told here.

There will also be touched upon a theme, which because of its seeming extreme difficulty, was as if ones did not notice and evade it. This theme about the special significance of arithmetic for the formation an abstract thinking, which obviously is of exceptional importance not only from the point of view of studying in the field of education, but also for understanding the essence of such a notion as mind. Having no such understanding, science as well as the story with imaginary numbers, is doomed to many failures. In particular, all attempts to create "artificial intelligence" of non-biological type will be in vain since it is impossible in principle! It will be shown in this book how Gottfried Leibnitz’s truly ingenious conjecture, that thinking is an unconscious process of calculations, turned out to be true although only somewhat, because the mind cannot exist as a separate object or device and is a phenomenon of an ecumenical scale!!! If we now try to resume everything that we have mentioned here regarding arithmetic, then it will become clear, this is not only a science of sciences, but also a very effective sample for imitation.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Wonders of Arithmetic from Pierre Simon de Fermat»

Представляем Вашему вниманию похожие книги на «The Wonders of Arithmetic from Pierre Simon de Fermat» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Wonders of Arithmetic from Pierre Simon de Fermat»

Обсуждение, отзывы о книге «The Wonders of Arithmetic from Pierre Simon de Fermat» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x