Youri Kraskov - The Wonders of Arithmetic from Pierre Simon de Fermat

Здесь есть возможность читать онлайн «Youri Kraskov - The Wonders of Arithmetic from Pierre Simon de Fermat» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Прочая научная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Wonders of Arithmetic from Pierre Simon de Fermat: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Wonders of Arithmetic from Pierre Simon de Fermat»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book shows how the famous scientific problem called "Fermat Last theorem" (FLT) allows us to reveal the insolvency and incapacity of science, in which arithmetic for various historical reasons has lost the status of the primary basis of all knowledge. The unusual genre of the book was called "Scientific Blockbuster", what means a combination of an action-packed narrative in the style of fiction with individual fragments of purely scientific content. The original Russian text of this book is translated into English by its author Youri Kraskov.

The Wonders of Arithmetic from Pierre Simon de Fermat — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Wonders of Arithmetic from Pierre Simon de Fermat», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

59

In this case, identity (9) indicates that the same key formula is substituted into the transformed key formula (2) or that the equation (8) we obtained, is a key formula (2) in power n. But you can go the reverse way just give the identity (9) and then divide into factor the differences of powers and such a way you can obtain (8) without using the Fermat Binominal (7). But this way can be a trick to hide the understanding of the essence because when some identity falls from the sky, it may seem that there is nothing to object. However, if you memorize only this path, there is a risk of exposure in a misunderstanding of the essence because the question how to obtain this identity, may go unanswered.

60

Taking into account that c−a=b−2m the expression in square brackets of equation (8) can be transformed as follows: (c++b) n− (a++2m) n= с n-1− a n-1+ c n-2b− a n-22m+ c n-3b 2− a n-3(2m) 2+ … +b n-1− (2m) n-1; с n-1− a n-1= (с − a)(c++a) n-1; c n-2b − a n-22m = 2m(c n-2− a n-2) + c n-2(b − 2m) = (c − a)[2m(c++a) n-2+ c n-2]; c n-3b 2−a n-3(2m) 2= (2m) 2(c n-3− a n-3) + c n-3(b 2− 4m 2) = (c − a)[4m 2(c++a) n-3+ c n-3(b +2m)]; b n-1− (2m) n-1= (b − 2m)(b++2m) n-1= (c − a)(b++2m) n-1All differences of numbers except the first and last, can be set in general form: c xb y− a x(2m) y=(2m) y(c x− a x) + c x[b y− (2m) y] = (c − a)(c++a) x(2m) y+ (b − 2m)(b++2m) yc x= (c − a)[(c++a) x(2m) y+ (b++2m) yc x] And from here it is already become clear how the number (c − a) is take out of brackets. Similarly, you can take out of brackets the factor a + b = c + 2m. But this is possible only for odd powers n. In this case, equation (10) will have the form A iB iC iD i= (2m) n, where A i= c – b = a − 2m; B i= c – a = b − 2m; C i= a + b = c + 2m; D i– polynomial of power n − 3 [30].

61

Equation (10) can exist only if (1) holds i.e. {a n+b n−c n}=0 therefore, any option with no solutions leads to the disappearance of this ghost equation. And in particular, there is no “refutation” that it is wrong to seek a solution for any combination of factors, since A iB i=2m 2may contradict E i=2 n-1m n-2, when equating E ito an integer does not always give integer solutions because a polynomial of power n−2 (remaining after take out the factor c−a) in this case may not consist only of integers. However, this argument does not refute the conclusion made, but rather strengthens it with another contradiction because E iconsists of the same numbers (a, b, c, m) as A i, B iwhere there can be only integers.

62

In this proof, it was quite logical to indicate such a combination of factors in equation (10), from which the Pythagoras’ numbers follow. However, there are many other possibilities to get the same conclusion from this equation. For example, in [30] a whole ten different options are given and if desired, you can find even more. It is easy to show that Fermat's equation (1) is also impossible for fractional rational numbers since in this case, they can be led to a common denominator, which can then be reduced. Then we get the case of solving the Fermat equation in integers, but it has already been proven that this is impossible. In this proof of the FLT new discoveries are used, which are not known to current science: there are the key formula (2), a new way to solve the Pythagoras’ equation (4), (5), (6), and the Fermat Binomial formula (7) … yes of course, else also magic numbers from Pt. 4.3!!!

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Wonders of Arithmetic from Pierre Simon de Fermat»

Представляем Вашему вниманию похожие книги на «The Wonders of Arithmetic from Pierre Simon de Fermat» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Wonders of Arithmetic from Pierre Simon de Fermat»

Обсуждение, отзывы о книге «The Wonders of Arithmetic from Pierre Simon de Fermat» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x