Youri Kraskov - The Wonders of Arithmetic from Pierre Simon de Fermat

Здесь есть возможность читать онлайн «Youri Kraskov - The Wonders of Arithmetic from Pierre Simon de Fermat» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, ISBN: 2021, Жанр: Прочая научная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Wonders of Arithmetic from Pierre Simon de Fermat: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Wonders of Arithmetic from Pierre Simon de Fermat»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book shows how the famous scientific problem called "Fermat Last theorem" (FLT) allows us to reveal the insolvency and incapacity of science, in which arithmetic for various historical reasons has lost the status of the primary basis of all knowledge. The unusual genre of the book was called "Scientific Blockbuster", what means a combination of an action-packed narrative in the style of fiction with individual fragments of purely scientific content. The original Russian text of this book is translated into English by its author Youri Kraskov.

The Wonders of Arithmetic from Pierre Simon de Fermat — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Wonders of Arithmetic from Pierre Simon de Fermat», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

32

For mathematicians and programmers, the notion of function argument is quite common and has long been generally accepted. In particular, f (x, y, z) denotes a function with variable arguments x, y, z. The definition of the essence of a number through the notion of function arguments makes it very simple, understandable and effective since everything what is known about the number, comes from here and all what this definition does not correspond, should be questioned. This is not just the necessary caution, but also an effective way to test the strength of all kinds of structures, which quietly replace the essence of the number with dubious innovations that make science gormlessly and unsuitable for learning.

33

An exact definition the notion of data does not exist unless it includes a description from the explanatory dictionary. From here follows the uncertainty of its derivative notions such as data format, data processing, data operations etc. Such vague terminology generates a formulaic thinking, indicating that the mind does not develop, but becomes dull and by reaching in this mishmash of empty words critical point, it simply ceases to think. In this work, a definition the notion of “data” is given in Pt. 5.3.2. But for this it is necessary to give the most general definition the notion of information, which in its difficulty will be else greater than the definition the notion of number since the number itself is an information. The advances in this matter are so significant that after they will follow a real technological breakthrough with such potential of efficiency, which will be incomparably higher than which was due to the advent of computers.

34

Computations are not only actions with numbers, but also the application of methods to achieve the final result. Even a machine can cope with actions if the mind equips it with appropriate methods. But if the mind itself becomes like a machine i.e. not aware the methods of calculation, then it is able to create only monsters that will destroy also him selves. Namely to that all is going now because of the complete lack of a solution to the problem of ensuring data security. But the whole problem is that informatics as a science simply does not exist.

35

Specialists who comment on the ancients in their opinion the Euclid's "Elements" and the Diophantus' "Arithmetic", as if spellbound, see but cannot acknowledge the obvious. Neither Euclid nor Diophantus can be the creators the content of these books, this is beyond the power of even modern science. Moreover, these books appeared only in the late Middle Ages when the necessary writing was already developed. The authors of these books were just translators of truly ancient sources belonging to another civilization. Nowadays, people with such abilities are called medium.

36

If from the very beginning we have not decided on the concept of a number and have an idea of it only through prototypes (the number of fingers, or days of the week etc.), then sooner or later we will find that we don’t know anything about numbers and follow the calculations an immense set of empirical methods and rules. However, if initially we have an exact definition the notion of number, then for any calculations, we can use only this definition and the relatively small list of rules following from it. If we ourselves creating the required numbers, we can do this through the function arguments, which are represented in the generally accepted number system. But when it is necessary to calculate unknown numbers corresponding to a given function and task conditions, then special methods will often be required, which without understanding the essence of numbers will be very difficult.

37

The content of Peano’s axioms is as follows: (A1) 1 is a natural number; (A2) For any natural number n there is a natural number denoted by n' and called the number following n; (A3) If m'=n' for any positive integers m, n then m = n; (A4) The number 1 does not follow any natural number i.e. n' is never equal to 1; (A5) If the number 1 has some property P and for any number n with the property P the next number n' also has the property P then any natural number has the property P.

38

In the Euclid's "Elements" there is something similar to this axiom: "1. An unit is that by virtue of each of the things that exist is called one. 2. A number is a multitude composed of units” (Book VII, Definitions).

39

So, count is the nominate starting numbers in a finished (counted) form so that on their basis it becomes possible using a similar method to name any other numbers. All this of course, is not at all difficult, but why is it not taught at school and simply forced to memorize everything without explanation? The answer is very simple – because science simply does not know what a number is, but in any way cannot acknowledge this.

40

The axioms of actions were not separately singled out and are a direct consequence of determining the essence a notion of number. They contribute both to learning and establish a certain responsibility for the validity of any scientific research in the field of numbers. In this sense, the last 6th axiom looks even too categorical. But without this kind of restriction any gibberish can be dragged into the knowledge system and then called it a “breakthrough in science”.

41

The reconstructed proof of Fermat excludes the mistake made by Euclid. However, beginning from Gauss, other well-known proofs the Basic theorem of arithmetic repeat this same mistake. An exception is the proof received by the German mathematician Ernst Zermelo, see Appendix I.

42

Facsimile of the edition with the Cauchy's GTF proof was published by Google under the title MEMIRES DE LA CLASSE DES SCIENCES MATHTÉMATIQUES ET PHYSIQUES DE L’INSTITUT DE France. ANNEES 1813, 1814, 1815: https://books.google.de/books?id=k2pFAAAAcAAJ&pg=PA177#v=onepage&q&f=falseWhat we need is on page 177 under the title DEMONSTRATION DU THÉORÉME GÉNÉRAL DE FERMAT, SUR LES NOMBRES POLYGONES. Par M. A. L. CAUCHY. Lu à l’Académie, le 13 novembre 1815 (see Pics 34, 35). The general proof of Cauchy takes 43 (!!!) pages and this circumstance alone indicates that it does not fit into any textbook. Such creations are not something that students, but also academics are not be available because the first cannot understand anything about them and the second simply do not have the necessary time for this. Then it turns out that such proofs are hardly possible to check how convincing they are i.e. are they any proofs in general? But if Cauchy applied the descent method recommended by Fermat, then the proof would become so convincing that no checks would be required. A very simple conclusion follows from this: The Fermat's Golden Theorem as well as some of his other theorems, still remain unproven.

43

Examples are in many videos from the Internet. However, these examples in no way detract from the merits of professors who know their job perfectly.

44

It must be admitted that the method of Frey's proof is basically the same as that of Fermat i.e. it is based on obtaining a solution to the equation a n+b n=c nby combining it into a system with another equation – a key formula, and then solving this system. But if Fermat’s key formula a+b=c+2m is derived directly from the initial equation, while at Frey it is just taken from nothing and united to the Fermat equation a n+b n=c ni.e. Frey's curve y 2=x(x−a n)(x+b n) is a magical trick that allows to hide the essence of the problem and replace it with some kind of illusion. Even if Frey could prove the absence of integer solutions in his equation then this could in no way lead him to the proof of the FLT. But he did not succeed it also, therefore one “brilliant idea” gave birth to an “even more brilliant idea” about the contradiction of the “Frey curve” to the Taniyama – Simura conjecture. With this approach you can get incredibly great opportunities for manipulating and juggling the desired result, for example, you can "prove" that the equation a+b+c=d as well as the Fermat equation a n+b n=c nin integers cannot be solved if take abc=d as a key formula. However, such "ideas" that obviously indicate the substitution the subject of the proof should not be considered at all, since magicians hope only for the difficulty of directly refuting their trick.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Wonders of Arithmetic from Pierre Simon de Fermat»

Представляем Вашему вниманию похожие книги на «The Wonders of Arithmetic from Pierre Simon de Fermat» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Wonders of Arithmetic from Pierre Simon de Fermat»

Обсуждение, отзывы о книге «The Wonders of Arithmetic from Pierre Simon de Fermat» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x