
Данные измерений в каждый конкретный момент времени представляют совокупность величин
, соответствующих N пунктам измерений.
Уже несколько первых членов разложения определяют 90 – 95% общей дисперсии и тем самым выражение 2.4. позволяет оценить изменчивость концентрации по всему району, то есть общую характеристику санитарно-гигиенической обстановки.
Примеры, приведенные выше, показывают, что проблемы связанные с выбором оптимальной дискретности [21], выбора контролируемых параметров, с учетом времени осреднения, могут существенно снизить объективность оценки даже при наличии технических средств контроля.
Следует иметь в виду, что большинство приборов с постоянными коэффициентами запаздывания, уже в процессе измерения производят экспоненциальное сглаживание или осредняют реальный процесс по экспоненте. Таким образом, проблемы организации системы контроля можно было бы разделить на две основные части (подсистемы).
Первая состоит в разработке и оснащении пунктов контроля ЗВ техническими средствами, способными определить значение концентрации
с определенным временем осреднения
, вторая часть (подсистема) состоит в разработке и внедрении математических моделей и алгоритмов (методик, программ), позволяющих интерпретировать полученные данные с точки зрения оценки санитарно-гигиенической обстановки. Эта подсистема обеспечивает не только информативность первой, но и непосредственно влияет на ее деятельность, то есть оптимизирует ее работу.
Собственно оценка вероятности превышения осредненной за соответствующий период времени
концентрацией ингредиента нормируемых уровней за контрольный период (Т) и является оценкой санитарно-гигиенической обстановки. Правильная с методической и формальной точки зрения процедура сравнения характеристик загрязнения и контрольных уровней представляет собой определенную проблему и составляет одну из целей данной работы.
Анализ данных о выбросах и сбросах загрязняющих веществ промышленными предприятиями, а также многочисленные исследования временной структуры концентрации ЗВ в атмосферном воздухе [19, 20, 21, 22, 23] показали, что концентрации являются случайными функциями времени Х(t) (рис. 2). Значения величины Х( t ) в каждый момент времени (t) не является однозначно определенным, как в случае детерминированных систем, а зависит от случайных факторов, которые влияли на систему до момента времени (t). Случайный характер результатов наблюдений любого явления может быть обусловлен или физической природой этого явления или условиями его наблюдения и регистрации. Применительно к контролю эмиссий, а также качеству объектов окружающей среды имеют место оба этих фактора.
Во-первых, случайными являются некоторые компоненты ошибок измерений (отбор проб, их транспортировка, собственно анализ), во-вторых, случайным является характер турбулентности атмосферы и метеорологических элементов, что приводит к пульсации скорости, температуры, давления и в том числе концентрации скалярной примеси (концентрации ЗВ) в точке наблюдения [24] даже, если она консервативная и пассивная, в – третьих при генерации выбросов ЗВ (газов, паров, аэрозолей) или сбросов в различных технологических процессах и аппаратах, нельзя считать известными все факторы, регулирующие мгновенные значения концентрации конкретных ингредиентов. Аналогично, случайный характер имеют метеорологические процессы, регулирующие формирование полей концентрации (ЗВ) в атмосферном воздухе.
Пример иллюстрации случайной функции, представляющей временную изменчивость концентрации некоторого ингредиента ЗВ в воздухе и ее пересечение с границами допуска – ПДК представлены ниже на рис. 2.3. Фактическая реализация случайной функции и пересечений контрольных уровней показана на рис. 9.9. приложения.
Читать дальше