Давайте посмотрим другие показатели. Так до 2017 года дополнительные данные не давали преимущества, а лишь ухудшали результат. В 2017 году результаты сравнялись, а после с дополнительными данными результаты линейно обгоняют простого обучения на датасете. Сейчас TOP-1 = 90.2%, TOP-5 = 98.8. Возможно, именно в них и будет прогресс.
Также скорость обучения выросла: 2018 – 6.2…10 минуты, 2019 – 1.3…9 минуты, 2020 – 47 секунд до 1 минуты. Время всё же снижается кратно, хоть и по убывающей, а ресурсы увеличиваются экспоненциально, но и сложность нейронных сетей возрастает, чтобы показывать результаты более высокие. Но, хоть и ресурсов требуется гораздо больше, но в реальности нас интересует стоимость, а она постоянно снижается: 2018 – 500$, 2019 – 10$, 2020 – 8$, хоть и затухающе.
Может быть ситуация связан с утиханием интереса среди учёных к искусственному интеллекту? Но, нет, доля публикаций в AI со времени прорыва в распознавании изображений относительно всех публикаций экспоненциально растёт:
год – % 2011 – 1.4 2012 – 1.2 2013 – 1.2 2014 – 1.3 2015 – 1.5 2016 – 1.8 2017 – 2.0 2018 – 2.5 2019 – 3.8
Общее число публикаций тоже растёт, причём экспоненциально:
2011 – 0.1 тысяч 2012 – 0.2 тысяч 2013 – 0.3 тысяч 2014 – 0.5 тысяч 2015 – 1.1 тысяч 2016 – 1.9 тысяч 2017 – 3.0 тысяч 2018 – 3.5 тысяч 2019 – 5.8 тысяч 2020 – 6.5 тысяч
Рассмотрим США, так как она занимает лидирующее место по публикациям (36,3%) в AI от других стран в совокупи, что не удивительно, ведь доля PHD полученных в США от всех стран в совокупи в AI составляет 81,8%. PHD по компьютерным наукам специализация на ML/AI лидирует с долей 25% от всех направлений по компьютерным наукам, отрываясь от Теории алгоритмов с долей 8%. При этом скорость роста популярности за год у ML/AI самая высокая: 9%. А подробнее про рост с 2019 по 2020 (остальные показывают снижение популярности):
Artificial Intelligence/Machine Learning 9% Robotics/Vision 2.6% Human-Computer Interaction 2% Security/Information Assurance 2% Computing Education 1.4% Databases/Information Retrieval < 1% High Performance Computing < 1% Theory and Algorithms < 1% Information Science < 1% Social Computing/Social Informatics/CSCW < 1%
При этом с каждым годом, получившие степень PhD (Doctor of Philosophy) в США, всё больше находят работу в частных компаниях, что подтверждает, что компании оценивают потенциал AI, который они смогут применить.:
год % 2010 – 44 2011 – 41 2012 – 50 2013 – 50 2014 – 58 2015 – 58 2016 – 60 2017 – 58 2018 – 61 2019 – 65
При этом важно заметить, что растут публикации не только издаваемые государственными учреждениями, такими как институтами и государством при написании докторских работ, но и корпоративные, то есть те, которые предполагается использовать в реальном бизнесе и тенденция показывает экспоненциальный рост:
год Китай США 2010 – 0,2 тысяч 0,7 тысяч 2011 – 0,2 тысяч 0,7 тысяч 2012 – 0,2 тысяч 0,8 тысяч 2013 – 0,3 тысяч 0,9 тысяч 2014 – 0,3 тысяч 1,0 тысяч 2015 – 0,4 тысяч 1,3 тысяч 2016 – 0,5 тысяч 1,5 тысяч 2017 – 0,7 тысяч 2,0 тысяч 2018 – 1,1 тысяч 2,7 тысяч 2019 – 1,6 тысяч 3,6 тысяч
Раз есть публикации, значит есть и исследования, а наиболее полезные обычно (зависит от страны) патентуют. При этом рост экспоненциальный числа патентов в IA и доля IA патентов постепенно растёт от общего числа патентов:
год – тысяч патентов 2009 – 39 2010 – 42 2011 – 49 2012 – 56 2013 – 60 2014 – 60 2015 – 60 2016 – 57 2017 – 61 2018 – 78 2019 – 102
Ориентируясь на сегментацию AI публикаций на сайте arXiv можно косвенно провести с общей ситуацией по росту направлений в AI. В приведённой ниже статистике они все показывают рост и при том линейный. Наибольший рост показали Computer Vision (31% от общего) и нейронные сети (32% от общего):
область AI публикаций Нейронный Machine Learning 11.098 Computer Vision 11.001 Языки 5.573 Robotics 2.571 Общий AI 1.923 Статистический ML 1.818
Также косвенно можно посмотреть по распределению конференций:
International Conference on Intelligent Robots and Systems (IROS) 25,719 Conference and Workshop on Neural Information Processing Systems (NIPS) 22,011 International Conference on Machine Learning (ICML) 10,800 The Conference on Computer Vision and Pattern Recognition (CVPR) 7,500 Association for the Advancement of Artificial Intelligence (AAAI) 4,884 International Joint Conference on Artificial Intelligence (IJCAI) 3,015
Безусловно, достигать больших результатов всё сложнее, но и важно, что распознавание мелких картинок довольно старая задача, которая уже не столь актуальна. Рассмотрим другие перспективные области, в которых устраиваются соревнования:
* распознавание речи, используемый для субтитров видео;
* генерация изображений лиц людей: Fréchet Inception Distance (DID) – c 01/2018 по 07/2020 уменьшился с 40 до 25.4;
* распознавание фейковых изображений, которые могут использоваться при фильтрации в социальных сетях и новостях: Deepfake Detection Challenge, Логистическая функция ошибки с 0.7 до 0.19 за 4 месяца;
* распознавание расположения ключевых точек и суставов на изображении человека, которые могут использоваться в кинематографе и магазинах без касс, таких как Amazon.Go: Keypoint Detection Challenge в Common Objects in Context (COCO) – увеличение с 62% до 80.8% за 4 года;
Читать дальше