Евгений Штольц - Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData

Здесь есть возможность читать онлайн «Евгений Штольц - Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2021, Жанр: Прочая научная литература, Программирование, Программы, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге Главный Архитектор Департамента Архитектуры Управления Технической Архитектуры (Центра Облачных Компетенций Cloud Native и Корпоративного университета архитекторов) и архитектор решения Сбербанка делится знаниями и опытом с читателей в области ML, полученных в работе Школе архитекторов. Автор:
* проводит читателя через процесс создания, обучения и развития нейронной сети, показывая детально на примерах
* повышает кругозор, показывая, какое она может занимать место в BigData с точки зрения Архитектора
* знакомит с реальными моделями в продуктовой среде

Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Когда мы подаём нейронные сети данных, на их основе происходит обучение нахождению решений и выявление закономерностей и данных, ранее которых не было. Для обучения могут использоваться статистические алгоритмы, например, на языке R, поиск в глубину на языке Prolog или поиск в ширину на Refal, а также подстраивающиеся структуры – нейронные сети. Нейронные сети, в зависимости от задач, строятся по разным принципам, имеют структуру и по–разному обучаются. В последнее время наибольший прорыв получили нейронные сети представления данных (Representation learning), занимающиеся выявлением в информации закономерностей, так как саму информацию из–за её размеров они не могут запомнить. Большой эффект дают глубокие нейронные сети, имеющие множество уровней признаков, признаки на последующих уровнях строятся на основании признаков с предыдущих уровней, о них и пойдёт речь в этой главе.

Под Machine Learning (ML) понимается адаптация преобразования входных данных в выходные данные в зависимости от истории решений. Такой класс задач решается или алгоритмическим способом, или с помощью нейронных сетей. О том, где какое решение и в какой ситуации лучше применять далее и пойдёт речь. Для практического примера мы возьмём классификацию изображений с помощью обучения глубокой нейронной сети с учителем. Посмотрим её местоположение в классификации.

Типы построения:

* Классическое обучение (экспертное);

* Нейронные сети.

Типы обучений:

* С учителем (регрессия, классификация, порождающие, seq2seq);

* Без учителя (кластеризация, поиск правил, обобщение, ассоциация).

По способу улучшения результата:

* Ансамбли нейронных сетей;

* Глубокие нейронные сети.

В эволюции нейронных сетей, обычно, выделяют три эпохи:

* Экспертные системы (rule based модели) – системы, основанные на правилах. Недостатком является слабая актуализируемость, если эксперт закончил работать, то система начинает устаревать;

* Машинное обучение – с помощью статистических методов по указанным признакам (фичам) система находит правила. Сами фичи должен определить эксперт предметной области из всех имеющихся параметров данных, то есть выделить из сотни или тысячи параметров данных важные, например, столбцы в таблице базы данных. Это сложная задача, так как факторов для разных групп может быть переменное число и определить все группы и для них все факторы – крайне трудоёмкий процесс. При этом излишек факторов вносит шум в результат предсказания. Современные нейронные сети превосходят для большинства случаев статистические по вероятности;

* Нейронные сети позволяют самим выбрать признаки, но для этого требуется гораздо больше данных, обычно больше миллиона экземпляров. Эти данные требуются, чтобы пройти через все её слои и на последующих слоях усилить важность нужных признаков и уменьшить не важных.

Этапы эволюции нейронных сетей:

* 1950-е годы – исследование мозга и его имитирование;

* 1960-е годы – собеседник ELIZA (1956 год) на общие вопросы, генетические алгоритмы основанные на переборе всех возможных изменений и выбора лучшего;

* 1970-е годы – экспертные системы основанные на правилах и данных от экспертов, например MYCIN и DENDRAL;

* 1980-е годы – коммерческое внедрение экспертных систем;

* 2010-е годы – решение подготовленных задач нейронными сетями и статистическими алгоритмами;

* 2010-е годы – глубокое обучение в соревнованиях с человеком и реальном мире (автопилотах, переводчиках, ассистентах).

Последние годы:

* 1994 год – выигрыш Chinook в шашки у чемпиона мира,

* 1997 год – выигрыш Deep Blue в настольную игру шахматы у чемпиона мира,

* 2005 год – беспилотные автомобили на площадках (соревнование DARPA Grand Challenge),

* 2011 год – IBM Watson выиграла в телевизионной игре Jeopardy,

* 2012 год – Google X Lab распознаёт цветные изображения животных,

* 2016 год – Google Translate основан на нейронных сетях, выигрыш Google DeepMind AlphaGo у чемпиона мира по Go,

* 2017 год – выигрыш у чемпионов в коллективную 3D игру Dota2,

* 2018 год – беспилотные такси Alphabet Waymo на общих дорогах в Аризоне,

* 2019 год – победа Libratus чемпионов в покер,

* 2020 год – чат-бот на GPT-3 был не распознан собеседниками в социальной сети, видео-интерьвью с авотаром я не отличил от естественного,

* 2021 год – OpenAI Codex создаёт программы по детальному описанию задачи на естественном языке.

Достижения последнего времени:

* распознавание речи по движению губ;

* выигрыши в в 2D игры и 3D игры;

* выигрыши в настольные игры: шахматы, Go;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData»

Представляем Вашему вниманию похожие книги на «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Евгений Штольц - Облачная экосистема
Евгений Штольц
Отзывы о книге «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData»

Обсуждение, отзывы о книге «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x