Как раз когда Сунцефф прибыл в институт Карнеги, Сандадж заинтересовался сверхновыми (вместе с Густавом Тамманном). Несколько раз они вместе работали в Чили, на двух разных телескопах, и Сандадж просил Сунцеффа проверить, удалось ли ему обнаружить сверхновую. Таким образом Сунцефф тоже заинтересовался сверхновыми, и всякий раз, когда погода не позволяла вести наблюдения, отправлялся в библиотеку изучать материалы о сверхновых. И вскоре ему пришлось сменить своего учителя, потому что тот ослеп на правый глаз, который служил его рабочим инструментом на протяжении четырех десятилетий.
К тому времени изменилась практическая астрономия – в том виде, в котором она существовала на протяжении двухсот лет после изобретения телескопа. Все эти две сотни лет астрономы полагались только на свет, который бил им в глаза в какой-то момент, а затем этот свет исчез. Раньше астрономы могли нарисовать то, что увидели, они могли описать это словами. Они могли сделать замеры для определения местоположения объекта или описания его движения. Но теперь то, что они видели – сам свет, визуальную репрезентацию объекта в какой-то момент времени – исчезло.
Изобретение фотографии в середине 1800-х годов радикально изменило связь наблюдателей и их наблюдений. Фотографии имели очевидное преимущество для астрономии в сравнении с тем, что видит человеческий глаз. На фотографии сохранялось то, что видел астроном. Сохранялся сам свет, а следовательно, и образ объекта в определенный момент. Астрономы смогли ссылаться не только на свои рисунки, словесные описания и математические расчеты, а на фактически увиденное и зафиксированное. И это мог сделать любой другой астроном, а не только проводивший наблюдения.
Более того, фотография позволяла ученым не только собирать свет, она позволяла это делать на протяжении какого-то времени. Свет не просто «приземлялся» на фотографическую пластинку, он приземлялся и оставался на ней, а потом к нему добавлялся другой свет. Источники света были такими слабыми, что человек не мог их видеть не то что невооруженным глазом, а и с помощью телескопа, но это могла фотопластинка, которая работала как губка. Она могла всю ночь впитывать свет.
В астрономии фотопластинки использовались более ста лет для наблюдений за небесными телами и в спектрометрии. Их важным достоинством перед пленкой долгое время оставалось полное отсутствие усадки после лабораторной обработки и сушки. Это позволяло проводить достоверные измерения некоторых величин по изображению. В астрономии пластинки использовались до 1990-х годов. Фактически это фотоматериал на стеклянной подложке – плоскопараллельная стеклянная пластинка с нанесенной на нее светочувствительной эмульсией. Фотографические пластинки сменили ПЗС-матрицы (приборы с зарядовой связью – сокращение по первым буквам), которые также именуют CCD-матрицами, используя сокращение от английского Charge-Coupled Device. Это специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию приборов с зарядовой связью. В этих приборах кремний собирает свет, один фотон создает один электрический заряд. Фотопластинка чувствительна всего лишь к 1–2% доступных фотонов, а ПЗС могут достигать 100 % – преимущество очевидно для любого аспекта астрономии. Это цифровая технология – обработку изображений можно делать с помощью компьютера, а больше света означает, что можно видеть дальше и собирать данные быстрее.
Польза сверхновой для космологии в большой степени зависит от кривой блеска, которая показывает усиление и уменьшение яркости сверхновой на протяжении какого-то периода времени. Кривая блеска каждой сверхновой резко поднимается в течение нескольких дней, пока сверхновая идет к максимальной яркости, а потом постепенно падает по мере того, как сверхновая тускнеет. Но поскольку каждый тип сверхновых высвобождает свой собственный набор элементов (например, водород может быть, а может и не быть), появляется он в результате специфического процесса (взрыв или схлопывание), то кривая блеска поднимается и падает особым образом для каждого типа. Чтобы выяснить эту схему, нужно знать, когда кривая достигает пика, то есть яркость достигает максимума, так что вам нужно обнаружить сверхновую, пока яркость усиливается. Потом нужно за ней следить – чем больше наблюдений, чем больше данных можно зафиксировать на графике, а чем больше данных, тем надежнее кривая. Но эти наблюдения будут верны, только если вы уверены в яркости света сверхновой, а точность измерений зависит от того, насколько хорошо вы способны отличить свет сверхновой от света галактики, в которой она находится. Технология, позволяющая делать больше наблюдений, а потом увеличивать эти наблюдения пиксель за пикселем, помогает уменьшить количество ошибок. Скорость и точность ПЗС-технологии в этом помогают лучше всего, а работа фотометриста, такого как Сунцефф, становится искусством.
Читать дальше
Конец ознакомительного отрывка
Купить книгу