Все новые ученые задавались вопросом о форме Вселенной, весе Вселенной и судьбе Вселенной. В частности, этими вопросами занимались в Национальной лаборатории Лоуренса в Беркли, которая ведет несекретные исследования, входит в структуру Калифорнийского университета и является лабораторией Министерства энергетики США. Также отмечу, что 11 сотрудников лаборатории в разное время стали лауреатами Нобелевской премии.
Одним из сотрудников лаборатории является Сол Перлмуттер, удостоенный Нобелевской премии по физике в 2011 году за открытие ускоренного расширения Вселенной посредством наблюдения дальних сверхновых. Премию он получил совместно с Брайаном Шмидтом и Адамом Риссом.
Нобелевские лауреаты Брайан Шмидт, Сол Перлмуттер и Адам Рисс
Сол Перлмуттер не смотрел в телескоп, не рисовал схем движения звезд по ночному небу, не мечтал о том, чтобы забраться на вершину самой высокой горы и вести наблюдения оттуда. Его коллега Карл Пеннипакер тоже не собирался в детстве стать астрономом, хотя его кандидатская диссертация по физике написана на тему «инфракрасной астрономии». Другие члены их группы тоже не были астрономами. Они приехали в Национальную лабораторию Лоуренса не для того, чтобы заниматься астрономией. Да и лаборатория создавалась совсем не в этих целях. Но Калифорнийский университет в Беркли только что выиграл конкурс на создание нового крупного исследовательского центра, финансируемого правительством. Он получил название «Центр астрофизики частиц», хотя его вполне могли назвать «Центром темной материи» – и назвали бы, как в дальнейшем сказал первый директор центра, если бы хорошо подумали.
К началу 1980-х годов ученые уже знали, что Вселенная расширяется. Имелось вполне разумное объяснение (принятое большинством ученых) того, как Вселенная появилась и дошла до этого момента в истории – Большой взрыв. И теперь ученые естественно задались вопросом: а что будет дальше? Что будет с нашей Вселенной и, соответственно, нами? Достаточно ли материи, чтобы замедлить расширение, в результате чего однажды во Вселенной, растянутой настолько, насколько можно, начнется обратный процесс – сжатия? В таком случае космос является конечным и способным сворачиваться. Или во Вселенной так мало материи, что расширение будет продолжаться вечно? В таком случае космос бесконечен и способен только развертываться. Или во Вселенной как раз столько материи, сколько нужно, чтобы замедлить расширение, чтобы оно в конце концов прекратилось, остановилось, замерло? В таком случае космос является бесконечным и плоским.
Астрономы обладают своеобразным чувством юмора и дали свои названия вариантам окончательной судьбы Вселенной – Большой хлопок (если материи слишком много и произойдет сжатие), Большой мороз (если материи мало), а третий вариант (то, что надо) Вселенная Златовласки.
Астрономы знали еще до 1980-х, что количество материи во Вселенной будет влиять на скорость ее расширения. Но не знали, что не учитывают около 90 %, а то и больше, материи. Возможные космологические последствия осознания этого стали очевидны с самого начала. Как сказала Вера Рубин, пока мы не знаем характеристики темной материи и ее распределение в пространстве, мы не можем говорить об истинной плотности Вселенной. Если плотность высокая, то расширение в конце концов прекратится, и Вселенная начнет сжиматься. Если же плотность низкая, расширение будет продолжаться вечно. Именно плотность Вселенной требовалась для определения ее веса, формы и судьбы. За измерение этого параметра взялись Перлмуттер и Пеннипакер.
Вопрос «конца Вселенной» стар, как мир. Но ученые ХХ века могли выполнить жизненно важные измерения. Более того, открытие температуры 3К, которая оказалась соответствующей предсказанной на основании теории Большого взрыва, научило астрономов уважительно относиться к космологии, которую в конце концов признали наукой. Но если вы хотите понять историю и строение мироздания, то есть заняться космологией, то следует подумать о гравитации в масштабах Вселенной.
Нельзя сказать, что астрономы всегда игнорировали взаимоотношение гравитации и Вселенной. Современная физика, можно сказать, вышла из эпических попыток Ньютона вывести закон всемирного тяготения, который считается универсальным. Ньютон принял вызов Платона и произвел на бумаге расчеты, которые соответствовали движениям небесных тел. Телескоп стал инструментом, который позволил астрономам фиксировать все больше и больше движений этих звезд. Математика Ньютона тоже служила инструментом, позволявшим понимать эти движения, которые они наблюдали с помощью телескопа. Закон всемирного тяготения делал возможным существование науки космологии.
Читать дальше
Конец ознакомительного отрывка
Купить книгу