Геннадий Степанов - Искусственный ложный Разум и Мир

Здесь есть возможность читать онлайн «Геннадий Степанов - Искусственный ложный Разум и Мир» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Прочая научная литература, Философия, Математика, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Искусственный ложный Разум и Мир: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Искусственный ложный Разум и Мир»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

С точки зрения инженера Мир творится мгновенно.Мир – это истинный Разум или Бог.Истинный Разум творит ложный Разум и ложный Мир.Всё в Мире имеет в той или иной степени ложный Разум.Истинный Разум придумал Мир.Истинный Разум творится во время «падения» Материи в Пустоту. Как Уроборос.Ранее части сборника были опубликованы отдельными книгами «Творение Искусственного Разума», «Имитатор метаразума по Канту», «Великий Иммануил Кант как мессия в науке и Теория Всего», «Иммануил Кант и познание материи в Мире практическим разумом», «Метаразум и движение как Величайшее заблуждение человечества всех времён и народов по Иммануилу Канту».

Искусственный ложный Разум и Мир — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Искусственный ложный Разум и Мир», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Первая теорема Геделя о неполноте арифметики, которая является дедуктивной формальной системой, утверждает, что в любой формальной системе исчислений существуют высказывания истинные, но недоказуемые в этой системе Он утверждает, что неразрешимые высказывания могут оказаться разрешимыми в более сильной системе, получаемой добавлением к исходной формальной системе неразрешимого высказывания, в качестве аксиомы. Для новой системы опять можно эффективно получить новое геделево неразрешимое высказывания. Итерация этого процесса дает расширение арифметики, которое оказывается бесконечным. В этом смысле Гёдель говорит о незавершённости математики. На каждом этапе конструируется новое неразрешимое высказывание, которое оказывается разрешимым при следующем расширении формальной системы исчислений

Гёдель разработал концепцию о незавершённости математики и абсолютной неразрешимости некоторых математических утверждений. Им было внесено понятие объективной математики, которому он придал метафизический характер. Он ввёл различие между объективной и субъективной математикой.

Гёдель предположил существования абсолютно неразрешимых утверждений. Это полностью соответствует концепции Платона, согласно которому математические истинысуществуют вне и независимо от человеческого сознания и в этом смысле эти математические истины недоступны для человеческого познания и являются априорными по Канту.

Гёдель определил абсолютно неразрешимые утверждения как объективную математику, а математику, которая доступна человеку, он определил как субъективная математика, или человеческая математика. Два вида математики тесно связаны со второй теоремой Геделя о неполноте. Именно эта теорема делает незавершенность математики очевидной. Согласно ей невозможно выбрать определенную систему аксиом и правил и непротиворечиво сделать следующее утверждение о ней, где все аксиомы и правила, которые воспринимаются с математической определенностью, должны быть правильными, и что они содержат всю математику. Очевидно, никакая вполне определенная система правильных аксиом не может включать всю объективную математику, так как утверждение, которое устанавливает непротиворечивость системы истинно, но недоказуемо в системе. Однако что касается субъективной математики, то в ней может существовать конечное правило для произведения всех ее очевидных аксиом

Таким образом, под субъективной математикойГёделем понимается система всех доказуемых математических утверждений, в то время как под математикой объективнойГёделем понимается система всех истинных математических утверждений по Канту.

Разделение математики Гёделем на объективную и субъективную имеет важное значение для решения вопроса в математическом познании соотношения между человеческим мозгом разумом и мышлением и машинным разумом и мышлением.

Математическая определенность является некоторой характеристикой чистой математики, основанной на доказательстве, и поэтому истинность в чистой математике не дает гарантий математической определенности. Именно это указывает на возможность существования таких математических истин, которые в принципе не могут быть разрешены человеческим мозгом разумом и мышлением по Канту.

Если объективная математика может включать проблемы, не являющиеся неразрешимыми для человеческого мозга разума и мышления, то субъективная математика включает в себя, лишь познаваемые утверждения, которые можно вывести и доказать.

Класс истинных утверждений, которые человеческий мозг разум и мышление способен постичь с математической определенностью, представляет собой подкласс, по Гёделю, всех истинных утверждений математики. Концепция математической определенности связана с постижимостью человеческого мозга разума и мышления математических истин (эффект «ага!») по Канту.

Гёдель определил, что утверждения субъективной математики представляют собой совокупность математических истин, познаваемых человеком с математической определенностью с помощью доказательства. Такая субъективная математика непротиворечива и полна. Но она не представляет особого интереса, поскольку не может дать нетривиальный результат.

Человеческий мозг разум и мышление способен вырабатывать гипотезы, которые невозможно доказать в формальной системе исчислений с математической определенностью. Он постигает математические истины с математической определенностью совсем иным образом ( возможно случайным образом, содержательным (трансцендентальным) по Канту), чем с помощью полных и непротиворечивых теорий.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Искусственный ложный Разум и Мир»

Представляем Вашему вниманию похожие книги на «Искусственный ложный Разум и Мир» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Геннадий Степанов - Разум и Мир
Геннадий Степанов
Отзывы о книге «Искусственный ложный Разум и Мир»

Обсуждение, отзывы о книге «Искусственный ложный Разум и Мир» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x