Скорость везикулярного транспорта в аксоне достигает 20–50 см/сутки, а, скорость кровотока находится в диапазоне от 0,03 см/сек в капиллярах до 40 см/сек в аорте. Таким образом, скорость везикулярного аксонального транспорта митохондрий и ферментов, накапливаемых в аппарате Гольджи, меньше скорости транспорта питательных веществ кровеносной системой в 50–70 000 раз. Это различие и предопределяет лимитирующую стадию процесса регенерации повреждённых тем или иным образом аксонов, составляющую от 2 до 5 мм в сутки. Я пришёл к выводу, что именно энергетика этих уникальных нейронов может быть лимитирующим фактором их эффективной работы и регенерации их отростков.
А поскольку энергетика нейрона основана на окислительном фосфорилировании, я пришёл к предварительному выводу что исходным лимитирующим фактором работы этих уникальных нейронов может быть только кислород. В дальнейшем выяснилось, что наиболее слабым местом этих нейронов являются самые отдалённые от ядра клетки и от аппарата Гольджи терминальные участки аксонов, на которых локализуются рецепторы и которые способны к регенерации, после физиологической дегенерации.
Смерть организма является неизбежным итогом болезни старения. При оценке динамики старения важны два показателя – показатель средней и показатель максимальной продолжительности жизни.
Занимаясь поиском этапов патогенеза, лимитирующих продолжительную и здоровую жизнь, я пришёл к выводу что показатель максимальной или видовой продолжительности жизни связан с физиологическим старением (senescence) и зависит от единственного уникального внутреннего патогенного фактора – дефицита кислорода в органах и тканях и определяется удельными скоростями (на единицу массы тела в единицу времени) образования носителей свободной энергии : аденозинтри- фосфорной кислоты (АТФ), восстановленных форм никотинамид-аденин динуклеотидов (НАДН, НАДФН), восстановленной формы флавин-аденин-динуклеотида (ФАД) и ацетил-коэнзима А (ацетил-КоА). [1] Cвободная энергия или энергия Гиббса-Гельмгольца – часть внутренней энергии молекул которая в процессе реакций может быть превращена в работу.
Показатель максимальной продолжительности жизни на протяжении веков не изменяется и потому является видовым признаком. При этом парциальное давление кислорода в разных органах и тканях существенно различается, в связи с чем уровни гипоксии, нормоксии и гипероксии для каждого органа и каждой ткани уникальны [7].
На ограничение показателя максимальной продолжительности жизни для видов теплокровных животных впервые обратил внимание Макс Рубнер, исследуя энергетические характеристики животных в условиях покоя. Подробно об этом во второй части обзора.
Удельные скорости синтеза носителей энергии в свою очередь определяются не только парциальным давлением кислорода в органах и тканях, но и удельным содержанием в клетках митохондрий, которые катализируют основной процесс синтеза носителей свободной энергии – окислительное фосфорилирование.
В ряде клеток (стволовые, опухолевые) и тканей (ткани зародыша, плода и «камбиальные» ткани ниш стволовых клеток), в которых значительный вклад в производство носителей свободной энергии дают аэробный гликолиз и пентозофосфатный цикл, количество ферментов этих метаболических путей, присутствующих в клетках также определяет удельные скорости синтеза носителей свободной энергии.
Таким образом, показатель максимальной или видовой продолжительности жизни организмов определяется удельными скоростями синтеза носителей свободной энергии (на грамм тканей и органов в единицу времени): АТФ, НАДН, НАДФН, ФМН, ФАДН 2, Ацетил-КоА.
Показатель средней продолжительности жизни связан с патологическим или преждевременным старением (ageing), и также, как и показатель максимальной продолжительности жизни зависит от концентрации кислорода в органах и тканях, но, при этом, определяется не скоростями образования носителей свободной энергии, а скоростями их расходования.
Патологическое старение ускоряется воздействием многочисленных факторов биологической, химической и физической природы, что реализуется через унифицированный процесс расхода дефицитного кислорода или свободной энергии, как на работу систем безопасности организма(системы детоксикации; системы иммунитета; системы стрессового ответа и системы обеспечения высокого уровня селективности ферментов матричного синтеза ДНК, РНК и белка, а также системы исправления ошибок допускаемых этими ферментами), а также на преодоление метаболического хаоса в виде заболеваний, вызванных инфекциями, отравлениями, дистрессом и мутациями, в том случае если мощности энергозависимых систем безопасности организма оказалось недостаточно.
Читать дальше