К моделям, порождающим хаотическое поведение, относят перемешивание, и кухонный миксер отлично выполняет эту операцию. Более мощный алгоритм генерации хаоса заключается в растяжении и сжатии траекторий в пространстве. Наглядно этот процесс демонстрирует «операция пекаря». Когда пекарь печёт пироги, для улучшения качества теста он разминает его с помощью скалки, а затем складывает. В результате близкие траектории разбегаются и становятся далёкими, а далёкие сближаются. При добавлении в тесто капли пищевого красителя уже через два десятка операций первоначальное пятно увеличит свою площадь в 20 млн раз, а его толщина сократится до молекулярного слоя. Краска полностью смешается с тестом. Хаос действует таким же образом. Складывание устраняет первоначальную информацию о системе, а растяжение стирает крупномасштабную, лишая нас возможности каких-либо предсказаний о её поведении [12].
И, несмотря на то, что хаос накладывает ограничения на возможность прогнозирования, он предполагает наличие связей там, где их ранее не подозревал никто. Хаос позволяет находить порядок в различных явлениях, таких как атмосферные фронты, капающий кран, физико-химические процессы.
Так что же такое порядок? В отличие от хаоса – это определённость, малая степень энтропии, периодичность, закономерность, наличие устойчивых связей между явлениями. В свете изложенного в самом хаосе есть порядок. Ещё в первой половине XX века английским математиком Рамсеем была доказана теорема, смысл которой стал понятен лишь в настоящее время – полный беспорядок невозможен. Чем больше мощность хаоса, тем больше в нём очагов порядка. Достаточно управляющими сигналами воздействовать на эти очаги, и станет возможно осуществить переход в упорядоченные состояния, чем сегодня и занимается новая наука – теория управляемого хаоса [13].
В настоящее время идёт поиск законов перехода хаоса в порядок. Если такие законы будут открыты, то нас ждёт научная революция, открывающая фантастические технологические возможности, по сравнению с которыми киборг Т-1000 в фильме «Терминатор-2: Судный день» покажется просто детской игрушкой.
В обыденной жизни часто происходят ситуации, которые сопровождаются резкими скачкообразными трансформациями, несмотря на привычные плавные движения. Классические методы математического анализа, основа которых была создана ещё Ньютоном и Лейбницем, ориентированные на исследования гладких плавных изменений, не справляются с описанием и прогнозированием подобных процессов.
Теоретические принципы, сформулированные классической наукой, базируются на парадигме того, что протекающие в нашей действительности процессы рассматриваются в виде постоянно меняющихся параметров. Однако большинство совершающихся трансформаций происходят скачкообразно, резкими качественными изменениями объектов и процессов: внезапное разрушение моста, закипание жидкости, возникновение тюремных бунтов, наступление биржевого кризиса или крушение самолётов. И такие кардинальные метаморфозы возникают обычно на фоне предшествующих весьма плавных изменений системы, когда их появлению вроде бы ничего не предвещает. Собственно катастрофой называется скачкообразные внезапные трансформации, возникающие в системе в виде её ответа на предшествующие плавные изменения внешних условий. При этом такие трансформации крайне плохо поддаются предсказаниям [14]. Однако в современной области математических знаний, которая носит название теории катастроф, разработаны методы, позволяющие в определённых условиях производить оценки подобных явлений.
Фазовое пространство Ляпунова. Изменение цвета показывает переход системы от упорядоченного состояния к хаотическому [15]
Французский математик Рене Том предложил называть теорией катастроф топологическую теорию динамических систем, используемую для оценки метаморфоз явлений природы, а также совокупность приложений теории особенностей, указав на наличие в подобных процессах структурной устойчивости. При установленных ограничениях переменных и параметров всё многообразие протекающих процессов можно свести всего к семи (!) классическим топологическим конструктам, к которым и будет стремиться поведение системы [16]. Анализируя топологические портреты, являющиеся особыми зонами в фазовом пространстве состояний, возможно установить границы бифуркационных множеств, при попадании в которые система станет совершать скачкообразные трансформации.
Читать дальше