Микаэль Лонэ - Теорема зонтика, или Искусство правильно смотреть на мир через призму математики

Здесь есть возможность читать онлайн «Микаэль Лонэ - Теорема зонтика, или Искусство правильно смотреть на мир через призму математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2022, ISBN: 2022, Жанр: Прочая научная литература, Математика, foreign_edu, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема зонтика, или Искусство правильно смотреть на мир через призму математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема зонтика, или Искусство правильно смотреть на мир через призму математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Наше восприятие мира обманчиво. Наука часто ставит под сомнение наши самые сокровенные убеждения. Математика дает нам мощный инструмент для понимания механизмов Вселенной. Она учит нас мыслить шире и понимать больше, а главное, незримо сопровождает в нашей повседневной жизни.
Автор книги – математик Микаэль Лонэ, популяризатор науки, создатель канала Micmaths (более 540 000 подписчиков), автор «Большого романа о математике», переведенного на 15 языков мира, в том числе на русский.
В формате PDF A4 сохранен издательский макет книги.

Теорема зонтика, или Искусство правильно смотреть на мир через призму математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема зонтика, или Искусство правильно смотреть на мир через призму математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот пример эксперимента с крысами. Несколько особей поместили в клетки, внутри которых находились два рычага. Затем исследователи регулярно подавали крысам серию звуковых сигналов. Иногда два сигнала, иногда – восемь. Когда было всего два звуковых сигнала, крысам давали пищу при условии, что они нажимали на первый рычаг. Когда сигналов было восемь – при нажатии на второй рычаг. Некоторое время спустя грызуны поняли принцип и научились правильно нажимать на рычаг в зависимости от количества звуковых сигналов.

После того как крысы научились работать с рычагами, начался сам эксперимент. Что произойдет, если изменить количество звуковых сигналов? После трех сигналов, немного помедлив, крысы шли к первому рычагу, как в случае с двумя звонками. После пяти, шести или семи сигналов крысы выбирали второй рычаг, как в случае с восемью. Но после четырех сигналов они запутались! Половина крыс нерешительно подходила к первому рычагу, а другая половина – ко второму. Как будто для них число четыре оказывалось посередине между двумя и восемью, делая их выбор совершенно случайным.

Без сомнения, вы уже догадываетесь, какой напрашивается вывод: мультипликативно 4 находится посередине между 2 и 8. Если бы крысы рассуждали аддитивно, их смутила бы цифра 5. Но камнем преткновения для них стало все же число 4.

Подобные эксперименты проводились с другими наборами чисел и другими животными - фото 15

Подобные эксперименты проводились с другими наборами чисел и другими животными. Конечно, трудно понять, что происходит в головах этих маленьких существ, и результаты порой дают серьезную погрешность. Но несомненно одно: каждый раз животные терялись, когда сталкивались с числами, которые находятся в середине какого-либо отрезка с точки зрения мультипликативности, а не аддитивности.

Пытаясь выяснить сами истоки нашего понимания чисел, мы неизбежно приходим к одному и тому же выводу: наше естественное чувство величин преимущественно мультипликативно.

Тем не менее очевидно, что ни один мозг, будь то человеческий или животный, не даст точных ответов на поставленные вопросы без обучения. Мультипликативное мышление не является ни осознанным, ни точным. Полученные результаты спонтанны и интуитивны, как и ваша первая интуитивная реакция, когда вы поместили миллион в середину отрезка от тысячи до миллиарда. Они не свидетельствуют о математических знаниях, а просто демонстрируют работу врожденного, по-видимому, механизма, который наделяет нас преимущественно мультипликативной интуицией на числа.

Аналогичные тесты проводились со взрослыми американцами, и они ясно продемонстрировали, что по мере изучения математики мультипликативная интуиция постепенно исчезает. Для чисел от 1 до 10 взрослые выбирают исключительно аддитивный подход. Однако мультипликативный инстинкт не исчезает полностью, появляясь при работе с большими, наиболее сложными числами.

Таким образом, аддитивный подход не так спонтанен. По большому счету это всего лишь привычка, выработанная в детстве. В своей статье 1938 года Фрэнк Бенфорд писал: «Мы так привыкли все нумеровать как 1, 2, 3, 4…, при этом считая это естественным порядком вещей, так что сама идея принять нумерацию вида, допустим, 1, 2, 4, 8… кажется невозможной».

Возможно, вам все еще трудно это принять. Трудно отказаться от воспитываемого в нас аддитивного подхода. Если это так, не беспокойтесь, читайте дальше, позвольте себе увлечься. Вы увидите, как это увлекательно – открывать для себя новый способ мышления.

Однако возникает вопрос: если наша врожденная интуиция мультипликативна и если она больше подходит для осмысления окружающего нас мира, то почему мы так стараемся изгнать ее из наших умов? Зачем навязывать себе аддитивное мышление, которое меньше соответствует реальности? Неужели школьная математика оттолкнула нас от здравого смысла, заменив его искусственным и неадаптивным мышлением?

Стоит ли отказываться от аддитивного мышления?

Ответ – нет. Само по себе аддитивное мышление нельзя отбросить. Оно даже полезно во многих ситуациях. Когда в следующий раз вы будете рассчитываться на кассе в магазине, вы явно предпочтете сложение умножению. Также очевидно, что нет смысла убеждать вас, что, несмотря на все, что мы только что узнали, сложение и вычитание по-прежнему являются неотъемлемой частью нашей повседневной жизни: не настолько, как мы привыкли думать, но все же достаточно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема зонтика, или Искусство правильно смотреть на мир через призму математики»

Представляем Вашему вниманию похожие книги на «Теорема зонтика, или Искусство правильно смотреть на мир через призму математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теорема зонтика, или Искусство правильно смотреть на мир через призму математики»

Обсуждение, отзывы о книге «Теорема зонтика, или Искусство правильно смотреть на мир через призму математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x