Модификации и обобщения Общей теории относительности
На то она и теория относительности, чтобы не возводить её в абсолют. – В. Котиков
После создания Общей теории относительности появились несколько ее модификаций. Вейль, Калуца и Клейн, а также сам Эйнштейн пытались объяснить электромагнетизм через усложнение геометрии пространства-времени. Ставился вопрос, не являются ли электрическое и магнитное поле просто проявлением дополнительных измерений пространства-времени или каких-то других геометрических структур? Главной целью в этой деятельности является построение единой универсальной и, желательно, простой теории, которая объясняла бы все физические явления. К сожалению, до сих пор попытки построить такую теорию не принесли удовлетворительного результата.
В частности, с помощью модифицированной теории гравитации пытаются объяснить темную материю во Вселенной. Темную материю мы более подробно будем обсуждать позже. Сейчас лишь скажем, что это невидимое вещество в галактиках и скоплениях галактик, создающее гравитационное поле, которое является дополнительным к гравитации звезд и других видимых объектов. Пока неясно, из чего состоит темная материя. Идея модифицированной гравитации заключается в том, что темной материи нет вообще, а более быстрое, чем в ньютоновской теории, движение звезд и галактик объясняется поправками к уравнениям Эйнштейна и, как следствие, поправками к закону тяготения Ньютона на больших масштабах. Логически такая возможность не исключена. Вопрос в том, можно ли в рамках таких модифицированных теорий объяснить всю совокупность наблюдательных данных? Отдельные данные теория модифицированной гравитации объясняет хорошо, а другие – с трудом.
Предпринимались попытки построить теорию тяготения как теорию поля в плоском пространстве-времени, т.к. в этом случае проще проводить квантование гравитации. Однако всеобщего признания эти теории не получили. В частности, в таких теориях невозможно образование черных дыр. При сжатии звезды вещество, согласно таким теориям, должно сжиматься и стабилизироваться на некотором радиусе, не допуская образование горизонта событий черной дыры.
Сложно предугадать, как дальше будет развиваться наука, но пока эйнштейновская теория в ее первоначальном виде прекрасно описывает природу.
Ученые мечтают построить такую теорию, которая сможет объяснить все фундаментальные процессы во Вселенной, объединить все поля и частицы. Так, теория Максвелла объединяет электрические и магнитные явления, которые становятся просто разным проявлением единого электромагнитного поля. Набор уравнений Единой теории поля будет задавать правила игры, подобно правилам в шахматах или футболе, но гораздо более сложные. По этим единым универсальным правилам рождаются, взаимодействуют и взаимно превращаются все частицы и поля.
Большинство исследователей сходится в том, что гравитация среди этого всеобщего единства не останется в стороне, а будет играть, возможно, принципиальную и определяющую роль. Что искривленное пространство-время – это не просто сцена, на которой разворачиваются события. Оно само будет квантоваться, бурлить, распадаться на частицы – гравитоны. В общем, жить сложной и активной жизнью. Общая теория относительности уже показала, что пространство-время имеет динамику – оно искривляется в зависимости от имеющегося в нем вещества, а в квантовой теории от гравитации ожидается еще большее. Калуца, Клейн, Эйнштейн и другие исследователи уже пытались объяснить электромагнетизм как одно из свойств искривленного пространства-времени, но подобные усилия пока к успеху не привели. Однако нельзя исключать, что в рамках какого-то более хитроумного подхода мечта физиков об окончательной единой теории все-таки сбудется.
Общая теория относительности предсказывает существование черных дыр, которые с математической точки зрения являются решениями уравнений Эйнштейна. Пространство-время способно так сильно искривиться, что из отдельных его областей свет не сможет выйти наружу, возникает как бы ловушка для света и всех других частиц. Это и есть черная дыра.
Кстати говоря, объект, притяжение которого столь велико, что скорость убегания с его поверхности равна скорости света, обсуждал английский священник Джон Мичелл (1724—1793) еще в 1784 г. – задолго до создания Общей теории относительности. Мичелл пользовался тогда теорией Ньютона и пришел к выводу, что такой объект будет невидимым, поскольку он не отпускает от себя свет. Он назвал их темными звездами. Через 14 лет после появления статьи Мичелла знаменитый французский ученый Пьер Симон Лапласс вычислил радиус такой темной звезды, удивительным образом совпадающий с радиусом незаряженной и невращающейся сферически симметричной черной дыры в Общей теории относительности.
Читать дальше