Александр Петров - Гравитация. От хрустальных сфер до кротовых нор

Здесь есть возможность читать онлайн «Александр Петров - Гравитация. От хрустальных сфер до кротовых нор» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Фрязино, Год выпуска: 2013, ISBN: 2013, Издательство: Array Литагент «Век», Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Гравитация. От хрустальных сфер до кротовых нор: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Гравитация. От хрустальных сфер до кротовых нор»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.

Гравитация. От хрустальных сфер до кротовых нор — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Гравитация. От хрустальных сфер до кротовых нор», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поэтому сама логика построения должна бы навести на мысль, что этой инвариантности должны соответствовать фундаментальные величины. Фактически в 1905–1906 годах все было готово для того, чтобы в СТО (в Пуанкаре-инвариантной теории), основываясь на симметриях пространства Минковского, представить общие правила построения 10-ти сохраняющихся величин. Но этого не произошло. Историки объясняют это тем, что творцы науки того времени были в эйфории от работы по переформулировке всей физики в релятивистскую. До законов сохранения руки просто не дошли.

Первым, кто представил такие правила, был немецкий математик и механик Густав Герглотц (1881–1953). Он вывел законы сохранения из универсальных соображений инвариантности относительно группы Пуанкаре в 1911 году, разрабатывая релятивистскую теорию сплошных сред. Однако поначалу сам не придал этому никакого особого значения. Лишь немного позже фундаментальный смысл этих результатов был осознан замечательным немецким математиком Феликсом Клейном (1849–1925), который его всячески пропагандировал. После чего симметрии пространства Минковского стали основой построения законов сохранения в любой релятивистской теории. В частности, на результаты Герглотца Клейн обратил внимание другого немецкого математика Фридриха Энгеля (1861–1941). Тот свел в единую форму группу смещений в механике Ньютона. Это так называемая группа Галилея – Ньютона, она объединяет смещения в пространстве Евклида и смещения по времени. А в 1916 году показал в общем виде, что все сохраняющиеся величины (энергия, импульс и момент импульса) в нерелятивистской физике могут быть построены из инвариантности относительно движений этой группы. Мы привели этот пример, чтобы подчеркнуть насколько бурным было развитие релятивистской физики. Обоснование и интерпретация законов сохранения в СТО было достигнуты раньше, чем в механике Ньютона!

На основе инвариантности относительно группы Пуанкаре была пересмотрена и иерархия сохраняющихся величин, которые были объединены в единые комплексы. Обсуждая СТО, мы уже установили, что в случае пробной массивной частицы единый смысл имеет 4-вектор энергии-импульса: энергия представляет его временную компоненту, а импульс – три пространственные компоненты. При этом обе эти меры, определяющие 4-вектор, являются составляющими более общей единой меры – релятивистского тензора энергии-импульса T ab (об этом подробнее см. Дополнение 2). Можно сказать, что 4-вектор энергии-импульса дополняется компонентами давления и внутренних натяжений, что в результате дает тензор энергии-импульса. Этот тензор можно определить и для твердых тел, и для набора материальных частиц, и для сплошной среды, и для любого поля, распределенного в пространстве.

Подведем некоторый итог. Предположим, что физическая система в СТО замкнута, т. е. не взаимодействует с внешним миром. Тогда смещению по временной оси соответствует закон сохранения энергии; смещениям вдоль трех пространственных осей соответствуют законы сохранения для каждой из компонент импульса ; трем независимым пространственным вращениям соответствуют законы сохранения компонент углового момента . Наконец, трем независимым лоренцевым вращениям отвечает равномерное и прямолинейное движение центра инерции («центр энергии») всей системы, другими словами, выполняется обобщенный 1-й закон Ньютона, или обобщенный закон сохранения инерции. А если система не замкнута, и есть взаимодействие с другими системами? В этом случае те же симметрии дадут возможность рассчитать изменение величины той или иной физической характеристики (энергии, импульса, и т. д.).

Нелокализуемость сохраняющихся величин в ОТО

Энергия любит материю, но изменяет ей с пространством во времени.

Славомир Врублевский

Теперь, располагая определенным представлением о сохраняющихся величинах для физических систем в пространстве Минковского, обратимся к ОТО. Прежде всего отметим принципиальную разницу в трактовке пространства-времени. В СТО пространство-время – это арена, на которой разворачиваются физические взаимодействия, это «жесткий каркас», по отношению к которому определяются сохраняющиеся величины, более того, симметрии «каркаса» однозначно связаны с ними. В ОТО ситуация сложнее: пространство-время играет двойственную роль. С одной стороны, оно остается ареной для физических взаимодействий материи, с другой стороны, само является динамическим объектом и участвует во всех взаимодействиях. То есть для того чтобы определить сохраняющиеся величины в ОТО, их нужно определять совместно для материи и гравитационного поля. Более того, пространство-время в ОТО искривляется и меняется со временем, поэтому нет возможности определить симметрии, подобные тем, что определены в пространстве Минковского. Это означает, что нельзя определить сохраняющиеся величины отдельно для материи без гравитационного поля. Этот факт является еще одним поводом задуматься над определением законов сохранения совместно для материи и гравитационного поля.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Гравитация. От хрустальных сфер до кротовых нор»

Представляем Вашему вниманию похожие книги на «Гравитация. От хрустальных сфер до кротовых нор» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Петров - Дочь генерала
Александр Петров
Александр Петров - Меморандум
Александр Петров
libcat.ru: книга без обложки
Александр Петров
Геннадий Ерофеев - Диггер «кротовых нор»
Геннадий Ерофеев
Александр Бакулин - Гравитация и эфир
Александр Бакулин
Александр Петров - Россия - Жизнь взаймы
Александр Петров
Александр Петров - Пленник
Александр Петров
Александр Петров - Мой дворец
Александр Петров
Александр Петров - Созерцатель
Александр Петров
Отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор»

Обсуждение, отзывы о книге «Гравитация. От хрустальных сфер до кротовых нор» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x