В 20:40 ракета попала в казармы, где спала Мэйз, убив ее и 27 ее сослуживцев и почти сотню ранив. Одна эта атака, совершенная за три дня до окончания военных действий, стала причиной трети всех безвозвратных потерь США во время первой войны в Персидском заливе. Вероятно, их можно было бы избежать, если бы компьютеры говорили на другом языке – с другой базой.
Ни одна база, однако, не способна точно представить каждое число с помощью конечного набора цифр. При другой базе подобной ошибки с обнаружением ракеты можно было бы избежать, но вместо нее неизбежно возникли бы другие ошибки. Как бы то ни было, преимущества двоичной системы – несмотря на редкие сбои, которые происходят при ее использовании, – в энергопотреблении и надежности делают ее наиболее подходящей базой для современных компьютеров. Однако эти преимущества быстро испаряются, стоит лишь попытаться использовать бинарную систему в социальном контексте.
•
Представьте, что вы общаетесь с привлекательной незнакомкой, к которой вас притиснули в переполненном автобусе. Перед выходом вы просите у нее телефончик и получаете некую стандартную комбинацию из 11 цифр формата 07XXX–XXX – ХXX, общего для номеров мобильных телефонов в Великобритании. Для того чтобы получить такое же разнообразие номеров в двоичном формате, каждый номер мобильного телефона должен иметь не менее 30 цифр. Попробуйте записать что-то вроде 1110111001101100100111111111, пока вы не проехали свою остановку: «После седьмого ноля единичка или ноль?»
Более актуальная проблема – засилье потенциально опасного бинарного мышления в нашем обществе. С незапамятных времен быстрый выбор между «да» и «нет» означал разницу между жизнью и смертью. Наш примитивный мозг не успевал рассчитать вероятность того, приземлится ли падающий камень на нашу голову. Лицом к лицу с опасным животным требовалось мгновенно решить: драться или бежать. Чаще всего быстрое (и сверхосторожное) бинарное решение было лучше, чем неторопливое, взвешенное, просчитывающее все варианты. Эта бинарная манера принятия решений не менялась в своей основе даже с развитием и усложнением общественных отношений. Мы продолжали опираться на стереотипные представления о наших ближних – считали их хорошими или плохими, святыми или грешниками, друзьями или врагами. Такие классификации грубы, но они просто и понятно объясняли, как себя вести при общении с конкретным человеком. Со временем эти стереотипы укоренились еще крепче благодаря карикатурному изображению противоположностей – непременному атрибуту многих популярных дуалистических религий. Адепты этих религий лишены сомнений о том, что есть добро, а что – зло.
Но для большинства из нас сегодня подобные простые решения и категоричные карикатурные изображения не слишком актуальны. У нас есть время для более глубоких размышлений о важных жизненных решениях. Люди слишком сложны, чтобы классифицировать их лишь по бинарным характеристикам, слишком противоречивы, слишком изощрены. Бинарное мышление не позволило бы появиться таким прекрасным литературным героям, как Северус Снейп, Гэтсби или Гамлет. Причина, по которой нам нравятся эти неоднозначные, мятущиеся персонажи, заключается именно в том, что они отражают нашу собственную сложную несовершенную личность. Но нас все же притягивает комфортная определенность бинарных ярлыков, позволяющая нам показать внешнему миру, кто мы такие: демократы или республиканцы, левые или правые, верующие или атеисты. Мы обманываемся, выбирая между черным и белым, тогда как на самом деле в спектре гораздо больше цветов.
•
В моей дисциплине, математике, главная борьба идет как раз с такой самонавязанной ложной дихотомией: есть те, кто верит, что могут заниматься математикой, и те, кто думает, что не могут. Последних слишком много. Но ведь тех, кто вовсе не понимает математику и не умеет считать, почти нет. С другой стороны, уже на протяжении сотен лет не появлялось математиков, которые понимали бы всю известную человечеству математику. Все мы находимся где-то между двумя крайностями; где именно – зависит от того, насколько, по нашему мнению, эти знания могут быть нам полезны.
Понимание окружающих нас числовых систем дает нам представление об истории и культуре нашего вида. Этих, казалось бы, странных и чуждых систем бояться не следует; наоборот, им надо воздавать хвалу. Они рассказывают нам о том, как думали наши предки, и отражают аспекты их традиций. Они наглядно демонстрируют нам, что математика естественна с точки зрения биологии, присуща нам так же, как и пальцы на руках или ногах. Они учат языку современных технологий и помогают избежать простых математических ошибок. Вообще, как мы увидим в следующей главе, «препарируя» прошлые ошибки, современные математические технологии предоставляют нам способы избежать таких просчетов в будущем – иногда, правда, эффективность этих способов сомнительна.
Читать дальше
Конец ознакомительного отрывка
Купить книгу