Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь

Здесь есть возможность читать онлайн «Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, ISBN: 2019, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Многие из нас боятся математики и не любят ее. Можно сказать даже, ненавидят. А зря.
Математические истории Кита Йейтса наглядно демонстрируют, как математика наполняет нашу жизнь и управляет ею.
Каждая из глав посвящена одному математическому принципу, например теории вероятности, и демонстрирует, как эта концепция реализуется в повседневной жизни.
Вы узнаете о несправедливых судебных решениях, основанных на математических ошибках; о тянущихся последствиях катастрофы в Чернобыле; о том, как манипулируют статистикой и предотвращают эпидемии. И все это благодаря королеве наук.
Доступность подачи материала, отсутствие сложных математических формул, наглядная демонстрация важности математики в нашей жизни – вот главные принципы книги.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Глава 1

Мыслить шире: удивительная сила и отрезвляющие пределы экспоненциального поведения

Даррен Кэддик – инструктор по вождению из Калдикота, небольшого городка в Южном Уэльсе. В 2009 году его приятель сделал ему заманчивое предложение. Вложив всего лишь 3000 фунтов стерлингов в местный инвестиционный синдикат и убедив сделать то же самое еще двух человек, Даррен всего через пару недель получил бы 23 000 фунтов. Поначалу, посчитав, что это слишком хорошо, чтобы быть правдой, Кэддик сопротивлялся искушению. Но друзья в конце концов убедили его, что «никто ничего не потеряет, так как схема будет действовать бесконечно». Он решил попытать счастья и вложил свои сбережения в эту схему. Он потерял все и до сих пор, десять лет спустя, расхлебывает последствия.

Кэддик невольно оказался на дне пирамиды, которая просто не могла «действовать бесконечно». Запущенная в 2008 году программа Give and Take («Отдай и получи») перестала привлекать новых инвесторов и рухнула менее чем за год, но за это время свыше 10 000 вкладчиков со всей Великобритании вложили в нее более 21 млн фунтов. 90 % из них потеряли свои три тысячи. Инвестиционные схемы, основанные на том, что вкладчики вовлекают в них новых участников, чтобы получить свои дивиденды, заведомо обречены на неудачу. Количество новых вкладчиков, необходимых на каждом уровне схемы, растет пропорционально количеству людей, уже участвующих в ней. После пятнадцати этапов привлечения инвесторов в подобной пирамиде будет задействовано более 10 000 человек – вроде бы много, но схема «отдай и получи» легко позволяет заполучить такое количество участников. Однако еще через пятнадцать этапов для продолжения работы схемы в нее должен инвестировать уже каждый седьмой человек на планете. Этот феномен быстрого роста, неизбежным итогом которого становится крах всей системы из-за того, что она перестает привлекать новых участников (они заканчиваются физически), называется экспоненциальным ростом.

Сделанного не воротишь

Экспоненциальный рост – это возрастание любой величины пропорционально ее текущим размерам. Представьте, что утром, когда вы открываете пакет молока, туда, прежде чем снова наденете крышку, проникает одна клетка Streptococcus faecalis – бактерии стрептококка группы D. Стрептококк группы D – одна из бактерий, вызывающих скисание и свертывание молока, но разве единственная клетка – повод для беспокойства? [5] Botina, S. G., Lysenko, A. M., & Sukhodolets, V. V. (2005). Elucidation of the taxonomic status of industrial strains of thermophilic lactic acid bacteria by sequencing of 16S rRNA genes. Microbiology, 74 (4), 448–52. https://doi.org/10.1007/s11021-005-0087-7 Возможно, вас насторожит способность клетки стрептококка группы D делиться в молоке, производя две дочерние клетки каждый час [6] Cardenas, A. M., Andreacchio, K. A., & Edelstein, P. H. (2014). Prevalence and detection of mixed-population enterococcal bacteremia. Journal of Clinical Microbiology, 52 (7), 2604–8. https://doi.org/10.1128/JCM.00802–14 Lam, M. M. C., Seemann, T., Tobias, N. J., Chen, H., Haring, V., Moore, R. J., Stinear, T. P. (2013). Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin resistant Enterococcus faecium. BMC Genomics, 14, 595. https://doi.org/10.1186/1471–2164–14–595 . С каждым новым поколением число клеток увеличивается пропорционально текущему их числу, поэтому общее количество стрептококка растет в геометрической прогрессии.

Кривая, описывающая экспоненциальный рост, напоминает любимую роллерами, скейтбордистами и велосипедистами-трюкачами рампу в четверть трубы. Первоначально градиент рампы очень низкий – кривая очень пологая и набирает высоту лишь постепенно (что и демонстрирует первая линия на рис. 2).

Через два часа в вашем молоке резвятся уже 4 клетки стрептококка, а через четыре часа – 16. Пока что это не выглядит чем-то ужасным, так? Но, как и у рампы, высота экспоненциальной кривой и ее крутизна быстро растут. Рост в геометрической прогрессии поначалу представляется медленным, поэтому последующий резкий взлет может показаться неожиданным. Если оставить молоко на 48 часов, и экспоненциальный рост клеток стрептококка продолжится, то когда вы решите снова попить молока, в пакете может оказаться почти квадриллион (1 000 000 000 000 000) клеток – достаточно, чтобы свернулась ваша кровь, не говоря уж о молоке. В этот момент клеток будет больше, чем людей на нашей планете – 130 000 к одному. Экспоненциальные кривые иногда называют J-образными, так как они почти повторяют крутую кривую буквы J. Разумеется, по мере того, как бактерии используют питательные вещества в молоке и меняют его кислотность (рН), условия для роста ухудшаются, а его экспоненциальность сохраняется относительно недолго. На деле почти в каждом реальном сценарии долгосрочный экспоненциальный рост оказывается неустойчивым, а во многих случаях и патологическим, поскольку растущий объект истощает ресурсы донора, лишая его жизнеспособности. Так, устойчивый экспоненциальный рост клеток в организме является характерным признаком рака.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Представляем Вашему вниманию похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Кит Маккарти - Тихий сон смерти
Кит Маккарти
Отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Обсуждение, отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x