Подробнее об истории обнаружения всплесков, о данных наблюдений и о рассматриваемых теоретических моделях можно прочесть в обзоре «Быстрые радиовсплески», опубликованном в октябре 2018 г. в журнале «Успехи физических наук», 188, 1063 (онлайн: https://ufn.ru/ru/articles/2019/6/).
Строго говоря, можно было бы предположить, что источник находится в нашей Галактике, но окружен плотной оболочкой. Такая гипотеза рассматривалась. Она не подходит, так как при столь большом энерговыделении, которое необходимо для объяснения свойств быстрых радиовсплесков, оболочка сама должна была бы стать заметным источником, чего не наблюдалось.
Эти источники были обнаружены в самом начале нового тысячелетия (M. A. McLaughlin et al. Nature , 439, 817 2006) благодаря появлению новых технических возможностей для идентификации отдельных коротких импульсов в радиодиапазоне. Довольно быстро выяснилось, что источниками импульсов являются молодые нейтронные звезды в нашей Галактике.
Здесь важно, что потенциально все идеи могут работать, но, видимо, не для конкретного класса быстрых радиовсплесков. Многие модели неприменимы для этих событий просто потому, что предсказывают слишком низкий темп. Так что можно надеяться, что в будущем нас еще ждут открытия радиотранзиентов, которые объясняются тем или иным из предложенных сценариев.
Подробнее о популяционном синтезе в астрофизике можно прочесть в нашей с Михаилом Прохоровым статье в журнале «Успехи физических наук», 177, 1179 (2007). Этот обзор доступен онлайн на сайте https://ufn.ru/ru/articles/2007/11/b/.
Разумеется, бывает и так, что популяционный синтез используется для оценки свойств не просто более слабой, а вообще принципиально не наблюдавшейся популяции. Так, например, было при расчетах темпа слияний двойных черных дыр.
Желающие глубже погрузиться в эту тематику могут начать с обзоров Кристофа Мордасини, Яна Алиберта и их коллег. Например, W. Benz et al. Planet population synthesis (см.: https://arxiv.org/abs/1402.7086).
Конечно, можно говорить, что химический состав звезды и диска изначально задается составом протозвездного облака. Это верно. Но в наблюдениях экзопланет мы можем измерить только состав звезды по ее спектру, поэтому удобно говорить, что состав звезды задает состав протопланетного диска.
Планетезимали – небольшие тела в протопланетном диске. Их размер может доходить примерно до размера Марса. Минимальный составляет приблизительно 1 км. Эта величина соответствует достаточно большой массе, чтобы гравитация стала существенной для роста массы объекта и его внутренней структуры. Поглощение планетезималей приводит к росту массы планет. Оставшиеся планетезимали можно наблюдать в виде астероидов и комет.
< На самом деле снеговая линия для водяного льда соответствует немного более низкой температуре, но мы здесь не будем обсуждать эти детали.
На всякий случай напомню, что в протопланетном диске не может быть жидкости, так как давление мало. Поэтому из твердого состояния совершается переход сразу в газ, и наоборот.
Здесь мы существенно идеализируем ситуацию. Тем не менее итоговый ответ дает верную оценку по порядку величины.
Желающие могут заглянуть в Википедию ( https://en.wikipedia.org/wiki/Free_fall), где приводится значение предельной скорости – около 200 км/ч.
«Чайник Рассела» – вымышленный объект, придуманный философом Бертраном Расселом для демонстрации абсурдности некоторых предметов веры. «Чайник» вращается между Землей и Марсом, и он слишком мал, чтобы его можно было обнаружить имеющимися средствами наблюдений. При повышении чувствительности наблюдений делается заявление о еще меньшем размере чайника.
Большой круг на сфере лежит в плоскости, проходящей через ее центр. Например, меридианы являются большими кругами, а круги параллелей (кроме экватора) – нет.
Первой важной публикацией стала статья Джузеппе Коккони и Филипа Моррисона Searching for Interstellar Communications в журнале Nature в сентябре 1959 г.
Во-первых, это статья: Yuan Y.-F., Narayan R., Rees M. J. Constraining Alternate Models of Black Holes: Type I X-Ray Bursts on Accreting Fermion-Fermion and Boson-Fermion Stars// Astrophysical Journal, 606, 1112 (2004), она также доступна в Архиве: astro-ph/0401549. Во-вторых, статья: Narayan R., McClintock J. E. Observational Evidence for Black Holes, опубликованная в сборнике General Relativity and Gravitation: A Centennial Perspective. Cambridge University Press, 2015. Она также есть в Архиве (arXiv: 1312.6698).
Читать дальше
Конец ознакомительного отрывка
Купить книгу