И вот теперь, когда мы уже достаточно повозились с генетическим кодом, присутствующим в разных формах жизни на Земле, наступает новая эра, в которой генная инженерия станет тем, чем она должна быть. Научившись расшифровывать генетический код и начав осваивать его грамматику, мы можем приступить к написанию чего-то своего. Со временем из-под нашего пера будут выходить все более и более сложные ДНК, и в ближайшие два десятилетия мы, несомненно, станем свидетелями создания новых форм жизни или воскрешения тех, которые когда-то исчезли с нашей планеты. Кроме того, даже если это и не кажется столь же захватывающим — как с философской, так и эволюционной точки зрения, — использование биологического кода за рамками биологии станет обыденным делом, превратившись в неотъемлемую часть нашей профессиональной и личной жизни. В конце концов, ДНК — это код, который автономно воспроизводит сам себя, код, который вот уже почти 4 млрд лет неустанно реагирует на изменения среды, приспосабливаясь и видоизменяясь без какого-либо участия со стороны человека. Если мы доберемся до сути генома, а потом научимся тому, что с такой легкостью делает ДНК, а именно — самообучению, адаптивности, самовоспроизводству, то есть вещам, с которыми до сих пор не справляются небиологические машины, произойдет настоящая революция во взаимодействии вычислительных систем и механизмов ДНК.
Генетика и геномика будущего откроют перед нами небывалые возможности: мы не только будем лучше понимать, как устроено наше тело и наша среда, но и научимся управлять ими, а наши технологии достигнут еще более высокого уровня персонализации. Но как мы распорядимся этими достижениями и как будем использовать постоянно растущий запас знаний о генах и геномах? Давайте остановимся подробнее на ряде революционных технологий, которые задают вектор развития генетики сегодня.
Изучение генома
Еще совсем недавно даже для анализа ДНК, не говоря уже о секвенировании целых геномов, использовалось крупногабаритное дорогостоящее оборудование, устанавливавшееся в специально предназначенных для этого лабораториях. Как известно, на составление полной карты человеческого генома в 2000 г. ушло 15 месяцев, а расходы на проект достигли $300 млн. К 2006 г. стоимость картирования генома отдельно взятого человека сократилась до $14 млн. Десять лет спустя она составляла уже около $1500, а сама процедура занимала два дня. Сегодня при секвенировании уже можно обойтись не только без лабораторий, но даже и без генетиков. Секвенсоры нового поколения уже ничем не напоминают своих массивных предшественников, легко помещаясь в кармане. Пока они еще не способны полностью расшифровать весь геном, но это лишь вопрос времени. В данный момент они разрабатываются с целью анализа тех генов, знание о которых по каким-либо причинам считается важным. Новейшие представители этого класса устройств способны, к примеру, распознавать геномы определенного вида бактерий или штамма вируса, проникающих в организм человека. Результаты уже представляются весьма многообещающими, особенно если говорить о применении в регионах, где ситуация в сфере здравоохранения особенно тяжелая. В Западной Африке благодаря одному такому портативному устройству для секвенирования удалось выявить у пациентов 148 геномов вируса Эболы. Предполагается, что с развитием геномных технологий в будущем появятся миниатюрные и простые в использовании инструменты, которые позволят в полевых условиях за считаные часы ставить диагноз и определять эффективное лечение против таких вирусных инфекций, как коронарный вирус, лихорадка денге, Эбола, чикунгунья и Зика. Однажды они могут стать частью нашей повседневной жизни, как это произошло с мобильными телефонами.
Но и это далеко не предел — мы начинаем использовать для анализа ДНК полупроводники. Не так давно Крис Таумазу из Королевского колледжа Лондона разработал чип, который умещается в устройстве размером с USB-накопитель и в течение нескольких минут может обеспечить визуализацию результатов своей работы на компьютере. В задачи этой полупроводниковой технологии не входит изучение всех 3 млрд азотистых оснований человеческого генома. Вместо этого анализируется тот 1 % оснований, который уникален для каждого человека, выступая в качестве своего рода «биологического IP-адреса». Разные чипы в оболочке USB-накопителей распознают разные генетические мутации, тем самым выявляя предрасположенность к определенному заболеванию или, например, оценивая способность организма конкретного человека к метаболизму тех или иных лекарственных препаратов. «Врач больше не будет разбираться с заболеваниями, которые были у вас в прошлом, — он будет предупреждать недуги, которые ждут вас в будущем», — поясняет Таумазу.
Читать дальше
Конец ознакомительного отрывка
Купить книгу