Игроки уже долго спорят о том, чем обернется исход идеальной игры – неизменной победой белых или ничьей. Они не верят в то, что существует выигрышная стратегия за черных (впрочем, несмотря на это широко распространенное мнение, венгерский гроссмейстер Андраш Адорьян, напротив, полагает, что идея о начальном преимуществе белых всего лишь заблуждение).
Я уже оставил шахматы и так и не достиг в них успеха, но если мне будет позволено высказать свою догадку, то она такова: когда оба игрока делают верные ходы, партия всегда окончится ничьей (как при игре в «крестики-нолики»). В будущем компьютеры смогут проверить все уместные варианты и решить, прав ли я в своем предположении.
Довольно интересно, что ученые все еще не могут прийти к согласию в том, каково истинное значение теоремы Цермело. Изначально она была написана на немецком языке, а если вы читали научные или философские тексты на немецком (прекрасный пример – труды Гегеля), то вряд ли удивитесь и тому, что смысл теоремы туманен (о, как же нам повезло, что сейчас язык науки – английский!).
Свет! Камера! Мотор! Кейнсианский конкурс красоты
Представьте, что редакция газеты проводит конкурс, в котором участникам предъявляют двадцать фотографий и просят выбрать самое привлекательное лицо. Те, чей «избранник» наберет большинство голосов, получат право на приз – пожизненную подписку на газету, кофемашину и почетный значок.
Как играть в такую игру? Предположим, мне больше всех понравилось фото № 2. Следует ли отдать за него свой голос? Да – если я хочу, чтобы о моем мнении узнали. И нет – если я хочу подписку, кофемашину и значок.
Великий английский экономист Джон Мейнард Кейнс (1883–1946) описал версию такого конкурса в 12-й главе своей книги «Общая теория занятости, процента и денег» (1936). По мысли Кейнса, если мы хотим выиграть приз, нужно догадаться, какую фотографию одобрит большинство читателей. Это степень бакалавра софистики. Но, если мы еще более искушены, нам следует перейти сразу к степени магистра – и попытаться догадаться, какие снимки, по мнению других участников, будут наиболее привлекательными не для них самих, а для других . Как высказался об этом Кейнс, нам необходимо «посвятить свои мысленные усилия предвосхищению того, каким, по ожиданиям среднестатистического мнения, окажется это самое среднестатистическое мнение». Естественно, мы можем перейти на следующий уровень, и так далее.
Конечно же Кейнс говорил не о фотографиях, а об игре на фондовой бирже, где, как он считал, все поступали примерно так же. В конце концов, если мы намерены купить акции потому, что считаем, будто они хороши, – это подход далеко не лучший. Мудрее держать деньги под матрасом или на сберегательном счете. Цена акций поднимается не тогда, когда они хороши, а когда многие верят в то, что они хороши, – или когда многие, по мнению многих, верят в то, что эти акции хороши.
Хороший пример – цена акций Amazon. В 2001 г. они стоили дороже, чем акции всех остальных книготорговых фирм Америки, – причем Amazon к тому времени не заработала еще ни доллара. Но почему так было? Просто многие, по мнению многих, верили в то, что компания Amazon будет компанией Amazon.
Приведенная ниже игра – хороший пример идеи Кейнса. Ален Леду многое сделал для того, чтобы популярность обрела именно эта версия, которую он опубликовал во французском журнале Jeux et Stratégie [13] «Игры и стратегия» ( фр .).
в 1981 г.
«Угадайка» от Алена Леду
В комнате группа людей. Каждого просят загадать число от 0 до 100. После этого устроитель игры находит среднее арифметическое выбранных чисел и умножает его на 0,6. Итог умножения становится целевым числом. И игрок, загадавший число, самое близкое к этому итогу, выигрывает «мерседес» (они тогда продавались с неплохой скидкой).
Какое число выберете? Подумайте немного.
Есть два способа выбора: нормативный и позитивный.
В нормативной версии, которая предполагает, что все игроки разумны и рациональны, следует выбрать ноль. И вот почему. Если предположить, что люди выбирают числа случайным образом, то ожидаемое среднее равняется 50. Значит, чтобы победить, проводим быстрый расчет: 50×0,6=30 – выбор, кажется, ясен! Но постойте! Что, если каждый это поймет? Тогда средним будет 30. Получается, нужно выбрать 18? (30×0,6=18.) А если все прознают и об этом? Тогда средним будет 18, а нам нужно выбрать 10,8. (18×0,6=10,8.) Конечно же на этом история не кончается, и, если мы продолжим в том же духе, мы в конце концов дойдем до ноля.
Читать дальше
Конец ознакомительного отрывка
Купить книгу