Сейчас я занят в сфере бизнеса, но все равно продолжаю следить за всем, что происходит в области машинного обучения и ИИ.
М. Ф.: Насколько я знаю, свою техническую карьеру вы начали с преподавательской деятельности?
Д. М.: Да, в колледже Баллиол в Оксфорде я преподавал математику и информатику, а также знакомил студентов с робототехникой.
М. Ф.: А как вы перешли к консалтингу по вопросам управления и бизнеса в компании McKinsey?
Д. М.: Это была случайность. Я получил предложение от McKinsey присоединиться к ним в Кремниевой долине и подумал, что это интересный поворот в моей карьере.
В то время, как и многие мои коллеги, например Бобби Рао, я интересовался системами, с которыми можно было участвовать в соревновании беспилотных автомобилей DARPA Grand Challenge. Многие наши алгоритмы допускали применение к автономным транспортным средствам, и эти соревнования были одним из немногих мест, где их можно было использовать. Все мои друзья тогда переезжали в Кремниевую долину. Бобби работал в Беркли вместе со Стюартом Расселом и другими, поэтому я решил принять предложение McKinsey и переехать в Сан-Франциско. Это позволило быть рядом с Кремниевой долиной и с местом, где происходили различные мероприятия.
М. Ф.: Какую роль вы сейчас играете в McKinsey?
Д. М.: Я работаю с новаторскими технологическими компаниями в Кремниевой долине и провожу исследования на стыке технологий, изучая их влияние на бизнес и экономику. Как председатель MGI, я исследую не только технологии, но и макроэкономические и глобальные тенденции. У нас замечательные научные консультанты, среди которых есть и экономисты. Это Эрик Бринолфссон, Хэл Вариан и даже нобелевский лауреат Майк Спенс. Раньше с нами сотрудничал еще один нобелевский лауреат Роберт Солоу.
Мы следим за передовыми технологиями и прогрессом в сфере ИИ. Я поддерживаю контакты и сотрудничество с Эриком Хорвицем, Джеффом Дином, Демисом Хассабисом и Фей-Фей Ли, кроме того, учусь у легендарной Барбары Грош. В то время как я пытаюсь быть ближе к технологиям и науке, мои коллеги исследуют влияние этих технологий на экономику.
М. Ф.: Последние несколько лет глубокое обучение развивалось очень быстро. Как вы считаете, это путь к мечте или же не стоит многого ожидать от этого метода?
Д. М.: Мы только открываем для себя возможности глубокого обучения, нейронных сетей, обучения с подкреплением и переноса обучения. Запас того, что могут дать эти методы, огромен. Они уже помогают решать такие задачи, как классификация изображений и объектов, обработка естественного языка и генеративный ИИ, который прогнозирует и синтезирует последовательности для речи, изображений и прочего. Большой прогресс ожидается в так называемом узком ИИ, то есть в решении конкретных задач.
Для сравнения можно посмотреть на темпы разработки общего и сильного ИИ. Мы двигаемся быстрее, чем раньше, но необходим ряд прорывов. Впечатляет работа Джеффа Дина и других сотрудников Google Brain по автоматическому обучению машин. Но возможности машинного обучения ограничены.
М. Ф.: В чем их ограничения?
Д. М.: Маркированные данные не всегда доступны. Иногда их приходится создавать вручную, что занимает много времени и не гарантирует отсутствия ошибок. Для этого компании, занимающиеся беспилотными автомобилями, нанимают сотни людей. Появляются методы, позволяющие без этого обойтись. Например, предложенный Эриком Хорвицем метод in-stream supervision, присваивающий метки неявным образом непосредственно в процессе деятельности. Или генеративные состязательные сети (generative adversarial networks, GAN), которые представляют собой обучение с частичным привлечением учителя. Они генерируют полезные данные таким образом, чтобы уменьшить потребность в наборах данных, промаркированных людьми.
Вторая проблема состоит в количестве данных. Неудивительно, что больший прогресс достигнут в области машинного зрения, потому что в интернет ежедневно выкладывается множество изображений и видео. При этом доступность данных в некоторой степени уменьшают нормативные акты, конфиденциальность, безопасность и другие факторы. Этим частично объясняется разный темп прогресса в разных странах. Есть стандарты использования данных, которые упрощают доступ к сведениям из сферы здравоохранения. Именно поэтому Китай результативнее нас применяет ИИ в геномике.
Ограничены универсальные инструменты и не решены общие проблемы ИИ. Например, предлагаются новые формы теста Тьюринга.
Читать дальше
Конец ознакомительного отрывка
Купить книгу