Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие

Здесь есть возможность читать онлайн «Александр Казанский - Дискретная математика. Краткий курс. Учебное пособие» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2015, ISBN: 2015, Издательство: Литагент Проспект (без drm), Жанр: Прочая научная литература, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Дискретная математика. Краткий курс. Учебное пособие: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Дискретная математика. Краткий курс. Учебное пособие»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии изложены основные разделы современной дискретной математики. Рассматриваются вопросы, связанные с теорией множеств, теорией отношений, теорией графов и логикой. Материал построен на основе курса лекций, читаемого автором в технических вузах. В каждой главе рассмотрено большое число задач с подробными решениями и примерами, что позволяет эффективно и быстро осваивать изучаемую тему. Для студентов, обучающихся по специальности «Прикладная математика», а также для студентов технических и экономических факультетов, изучающих курс «Дискретная математика» и компьютерные технологии. Представляет интерес для тех, кто связан с использованием методов дискретной математики.

Дискретная математика. Краткий курс. Учебное пособие — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Дискретная математика. Краткий курс. Учебное пособие», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Важным при выполнении операций является их приоритет. Сначала выполняется операция дополнения, затем пересечения и затем объединения.

Множества удовлетворяют следующим законам (или тождествам):

Принцип двойственности алгебры множеств Нетрудно заметить что тождества в - фото 17

Принцип двойственности алгебры множеств

Нетрудно заметить, что тождества в таблице располагаются парами, например первое тождество AB = BA имеет парное AB = BA, и это выполняется для всех остальных законов алгебры множеств.

Принцип двойственностисостоит в том, что если верно какое-либо тождество, то тождество, полученное из него путем замены каждой из операций ∩, ∪, а также U и Ø на операции ∪, ∩, Ø и U , соответственно, будет также верно. Поэтому у любого тождества есть его «двойник», отличающийся тем, что у него каждая операция замена на парную ей (объединение на пересечение, а пересечение на объединение) и при этом пустое множество заменяется на универсальное, а универсальное на пустое. Принцип двойственности очень важен, поскольку если доказана истинность какого-либо выражения, то истинность двойственного ему можно не доказывать – оно будет истинно вследствие данного принципа. Например, для верного тождества

A = ( AB C ∩ C C) ∪ ( A ∩ ( BC ))

двойственное ему будет также верным тождеством

A = ( AB C ∪ C C) ∩ ( A ∪ ( BC )).

Или для верного тождества

A = ( AU ) ∪ ( ABC ),

двойственное ему тождество A = ( AØ ) ∩ ( ABC ).

1.9. Доказательство тождеств с множествами

Для доказательства равенства тождеств обычно используются четыре метода:

1) элементный метод;

2) диаграммы Венна;

3) табличный метод;

4) алгебраический метод.

Элементный методоснован на том, что для произвольно выбранного элемента x из множества, заданного в левой части тождества, доказывается, что этот элемент принадлежит и множеству правой части этого тождества. Затем выбирается произвольный элемент из правой части и показывается, что он входит и в левую часть. Вместе это доказывает, что оба множества состоят из одних и тех же элементов.

Докажем далее законы алгебры множеств.

Доказательство коммутативности(или сочетательного свойства) операций объединения и пересечения самоочевидно, поскольку ни в определении пересечения, ни в определении объединения ничего не говорится о порядке подмножеств.

Ассоциативность(или сочетательный закон) также просто доказывается. Покажем, что ( AB ) ∩ CA ∩ ( BC ). Если x ∈ ( AB ) ∩ C , то x ∈ ( AB ) и xС , из x ∈ ( AB ) следует, что xА и xB , т. е. x принадлежит всем трем множествам A, B и C . Следовательно, x ∈ ( BC ) и xA ∩ ( BC ). Обратное включение показывается аналогично, поскольку множество в правой части тождества также образовано из элементов (и только из таких), которые входят в каждое из множеств A, B и C . Ассоциативность для операции объединения следует из того, что элементы в множестве левой части тождества и элементы в множестве правой части состоят из таких и только таких элементов, которые принадлежат по крайней мере одному из подмножеств A, B и C .

Идемпотентностьозначает, что если xAA , то, значит, x принадлежит пересечению множества A с самим собой, т. е. x принадлежит самому множеству A . Если элемент xAA , то x принадлежит объединению множества A с самим собой, т. е. и в этом случае он принадлежит только множеству A .

Докажем дистрибутивность пересечения относительно объединения.

A ∩ ( BC ) = ( AB ) ∪ ( AC )

Необходимо убедиться, что множества, стоящие в левой и правой частях этого тождества, состоят из одних и тех же элементов. Сначала покажем, что множество левой части включается в множество правой части.

A ∩ ( BC ) ⊆ ( AB ) ∪ ( AC ).

Пусть xA ∩ ( BC ). Тогда по определению операции пересечения xA и x ∈ ( BC ). Если xB , то тогда x принадлежит и A и B и поэтому он принадлежит и их пересечению x ∈ ( AB ). Но поскольку x принадлежит объединению B и C , то он может принадлежать не только B , но и С и даже обеим этим множествам. Если xС , тогда он принадлежит и пересечению А и С , т. е. x ∈ ( AC ). Но отсюда можно видеть, что в любом из этих случаев x принадлежит к какому-то из множеств: либо ( AB ), либо (AC ), и тогда в соответствии с определением операции объединения x принадлежит и объединению этих множеств x ∈ ( AB ) ∪ ( AC ) и поэтому A ∩ ( BC ) ⊆ ( AB ) ∪ ( AC ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Дискретная математика. Краткий курс. Учебное пособие»

Представляем Вашему вниманию похожие книги на «Дискретная математика. Краткий курс. Учебное пособие» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Дискретная математика. Краткий курс. Учебное пособие»

Обсуждение, отзывы о книге «Дискретная математика. Краткий курс. Учебное пособие» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x