В процессе пробного освоения экспериментальных скважин на Талдинском метаноугольном месторождении были отработаны основные технологические этапы:
• бурение и обустройство метаноугольных скважин;
• процесс и последовательность гидравлического разрыва нескольких угольных пластов;
• откачка подземных вод и понижение их динамического уровня;
• извлечение угольного метана и его промысловая подготовка;
• варианты использования добытого метана.
За два года (2010–2011 гг.) эксплуатации 7 экспериментальных скважин было извлечено 11 млн м 3метана.
На Нарыкско-Осташкинской площади в течение 2011–2012 гг. бурили первые промысловые скважины (30 скважин, в соответствии с проектом) и в дальнейшем планируют их промышленную эксплуатацию.

Рис. 4 – Геологический разрез по экспериментальной скважине УМ-1.1
1.5. Технологии интенсифицированного извлечения метана
Для интенсификации притока метана к дегазационным скважинам до 10–20 тыс м 3/сут. нужны новые технологии воздействия на метаноугольные пласты.
Если шахтную дегазацию осуществляют в основном скважинами, пробуренными из шахтных выработок, то при заблаговременной дегазации добычные скважины бурят с поверхности земли. При этом в первом случае угленосный массив уже частично разгружен, а во втором – не разгружен. Статистика аварий свидетельствует о том, что опережающая шахтная дегазация не гарантирует безопасности труда шахтера. На наш взгляд, только интенсивная заблаговременная дегазация угольного пласта (за несколько лет до шахтной разработки) способна обезопасить дальнейшую его шахтную выемку. Тем более что, в соответствии с американскими данными, при заблаговременной дегазации степень извлечения метана из угольных пластов достигает 80–90 %.
Ниже представлены некоторые новые технологии интенсифицированного извлечения метана, которые используют в основном при заблаговременной дегазации угольного пласта.
Большая часть угольного метана (75–80 %) находится в сорбированном состоянии, и главная задача для его извлечения заключается в разрыве прочной и устойчивой физико-химической связи «уголь-метан», что возможно только при интенсивном разупрочнении угленосной толщи (прежде всего, угольного пласта) и его разгрузке. В связи с этим, на наш взгляд, много практически полезного по созданию в угольном пласте искусственных коллекторов (микро- и макроразмеров) как необходимых конструктивных элементов подземных газогенераторов накоплено в подземной газификации угля. И задача метаноугольной подотрасли – максимально использовать этот накопленный инженерный потенциал.
1.5.1. Гидравлический разрыв угольного пласта
Первые эксперименты по разупрочнению (разрыву) угольного пласта были проведены в 1954 г. на Лисичанской станции «Подземгаз», на пласте L 6, на глубине 150 м [33].
Естественная газопроницаемость угольного пласта на этой глубине составляла всего1,5 мД, и, в соответствии с теорией течения дутья в неизменяемой среде, для нагнетания в вертикальную скважину 150–200 нм 3/ч воздуха потребовалось бы давление в сотни атмосфер. При давлении же 2,0–3,0 МПа приемистость скважины составляла лишь 10–20 нм 3/ч, и поток дутья между соединяемыми вертикальными скважинами был настолько мал, что противоточное перемещение очага горения либо вообще было невозможно, либо затянулось бы на очень длительное время.
Однако в данном случае при давлении 4,2–4,5 МПа было зафиксировано резкое увеличение приема дутья скважиной, в соответствии с рис. 5. Под действием давления, немного превышающего давление вышележащих горных пород на глубине 150 м, происходит искусственное расширение естественных микротрещин и микропор. Это явление было названо «разрывом угольного пласта».

Рис. 5 – Зависимость приема дутья скважиной от давления: 1 – экспериментальная кривая; 2 – расчетная кривая
Начиная с 1956 г., при подземной газификации угольных пластов стали применять их разрыв с помощью жидкостей и закрепление созданных щелей кварцевым песком [34, 35].
Таким образом, Всесоюзный научно-исследовательский институт использования газа в народном хозяйстве (до 1966 г. – Всесоюзный научно-исследовательский институт подземной газификации угля) впервые в мировой практике в 1954 г. начал применять пневматический и гидравлический разрыв угольного пласта с целью его разупрочнения и существенного повышения газопроницаемости.
Читать дальше