Пример. Допустим необходимо найти зависимость между температурой посада металла в нагревательную печь и временем нагрева до требуемой температуры. В этом случае в качестве отклика выступит время нагрева, а в качестве факторов непосредственно температура посада металла в печь и расход газа (или электроэнергии). Данные факторы будут относиться к управляемым и контролируемым. К неуправляемым, но контролируемым факторам можно отнести, например, температуру поступающего воздуха для горения в печи, химический состав газ (или напряжение в сети). К неконтролируемым и неуправляемым – состояние кладки в печи и прочие тепловые потери.
Задание на самостоятельную работу
Для технических процессов получения чугуна, выплавки стали, внепечной обработки стали, непрерывной разливки металла, нагрева заготовок в методических печах прокатки листового и сортового металла, волочения, прессования, или отдельных элементов этих технологий:
1. Указать возможные виды эксперимента для изучения процесса.
2. Определить факторы процесса, указать к какой группе они относятся, предположить уровни и пределы варьирования.
3. Указать отклики эксперимента.
Контрольные вопросы для самопроверки
1.Дайте определения понятиям: эксперимент, объект исследования, предмет исследования, опыт, фактор, отклик, функция отклика.
2. Назовите и раскройте основные требования к факторам.
3. На какие группы делятся факторы, охарактеризуйте их.
4. По каким признакам выполняется классификация экспериментальных исследований? Назовите основные виды эксперимента и раскройте их сущность.
2. Случайная величина. Функции и законы распределения
§1. Понятие о случайной величине
Поскольку в ходе проведения эксперимента исследователю приходится иметь дело с неконтролируемыми и неуправляемыми факторами, а измерение контролируемых производится с некоторой погрешностью, то и результаты эксперимента будут иметь носить характер (как бы это странно не звучало на первый взгляд). Это приводит к необходимости объемной и строго регламентированной обработки экспериментальных данных с использованием методов теории вероятностей и математической статистики.
Случайная величина – это величина, которая в результате проведения опыта принимает то или иное возможное значение. Это значение будет лежать в определенном интервале и не известно заранее.
Случайные величины делятся на дискретные и непрерывные.
Дискретной называют случайную величину, которая может принимать счетное количество значений из конечного или бесконечного множества значений. Часто этими значениями выступают целые числа, которые показывают число наступивших случаев. В качестве примера дискретной случайной величины можно представить число людей в цеху. Оно не может быть меньше 0 и не может быть сильно больше чем число работающих в цеху по штату, (например – 200 человек). Таким образом в течении рабочего дня данная случайная величина будет принимать разные значения, но они будут целыми числами из определенного конечного множества и их можно будет посчитать. Множество значений может быть и бесконечным, например, если отсчитывать количество поступающий на стан заготовок без брака до первого его появления. В этом случае данное количество может быть бесконечным (теоретически брак может так и не появиться), но при этом сосчитать все эти заготовки до появления брака возможно.
Непрерывной называют случайную величину, значения которой полностью заполняют конечный или бесконечный числовой промежуток. Таким образом, непрерывная случайная величина может принимать бесконечное число значений. Примером может служить измерение температуры в печи. Интервал значений в этом случае будет конечным (например, 20…1250 °С), а вот число значений величины может быть бесконечным, с учетом количества знаков после запятой. Непрерывной случайной величиной будет и цена на металл, которая определяется рыночной ситуацией и постоянно колеблется, принимая разные значения. В этом случае пределы цены теоретически ничем не ограничены.
§2. Функция и закон распределения
Полученные в результате измерений значения случайной величины распределяются по определенному закону. Закон распределения случайной величины устанавливает связь между полученными значениями случайной величины и вероятностями их появления. Вид этого закона распределения является одной из характеристик случайной величины.
Читать дальше
Конец ознакомительного отрывка
Купить книгу