Генрих Альтов - Творчество как точная наука. Теория решения изобретательских задач

Здесь есть возможность читать онлайн «Генрих Альтов - Творчество как точная наука. Теория решения изобретательских задач» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1979, Издательство: Советское радио, Жанр: Прочая научная литература, Технические науки, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Творчество как точная наука. Теория решения изобретательских задач: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Творчество как точная наука. Теория решения изобретательских задач»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга.
Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы.
Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.

Творчество как точная наука. Теория решения изобретательских задач — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Творчество как точная наука. Теория решения изобретательских задач», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
где а количество изобретений относящихся к первой группе 2й уровень б - фото 21

где а - количество изобретений, относящихся к первой группе (2-й уровень); б - количество изобретений, относящихся ко второй группе (З-й уровень); в - количество изобретений, относящихся к третьей группе (4 - 5-й уровни); L и M -коэффициенты, характеризующие качественные отличия изобретения второй и третьей групп по сравнению с изобретениями первой группы.

Если взять небольшие и несильно отличающиеся друг от друга значения. L и М (например, 3 и 5), то К в основном будет учитывать частоту использования приема. Если значения L и М велики и резко отличаются друг от друга (например, 10 и 100), вычисленная эффективность будет практически зависеть только от числа изобретений третьей группы. Поэтому Д. М. Хитеева приняла L =5, М= 25 . В этом случае коэффициент К мог иметь значения от 1 до 25; если прием давал только изобретения первой группы, то K= 1; если все полученные данным приемом изобретения относились к третьей группе, то K = 25 .

Когда были подсчитаны значения К, выяснилось, что они меняются в очень широких пределах: от 3,9 (прием 3 - принцип местного качества) до 21,3 (прием 34 - принцип отброса и регенерации частей объекта).

Сопоставляя сильные и слабые приемы, Д. М. Хитеева пришла к интересным выводам. Оказалось, что слабые приемы стары и направлены на специализацию объектов, сильные приемы значительно новее и направлены на приближение объекта к идеальной машине, идеальному способу или идеальному веществу. В сильных приемах реализованы принципиально новые (обратные) подходы (приемы 13 и 22), используются физические эффекты (приемы 28 и 36), изменения более тонкие и «хитроумные» (прием 16), чем в старых и слабых приемах. Рассмотрим, например, приемы 19 (переход к прерывному действию) и 20 (переход к непрерывному действию). На первый взгляд, приемы родственные. Но у приема 20 коэффициент эффективности оказался в полтора раза выше, чем у приема 19. Почему? Непрерывность действия - это приближение к идеальному способу, а прерывность -отход от него, и этот отход оправдан лишь в тех специальных случаях, когда переход к импульсному режиму дает новый эффект, как-то покрывающий потери времени в паузах.

Прием 9 (предварительное антидействие) оказался сильнее «родственного» приема 10 (предварительное действие). Дело в том, что прием 9 в сущности включает две операции: сделать заранее (прием 10) и сделать наоборот (прием 13). «Сдвоенный» прием, естественно, ведет к более радикальным преобразованиям объекта и поэтому сильнее одинарного приема. Итак, сильные приемы

- предлагают коренные изменения объекта;

- направлены на приближение объекта к идеальной машине;

- являются синтезом нескольких действий. Всем этим требованиям одновременно удовлетворяет подприем 28г: использование ферромагнитного порошка и магнитного поля (т. е. замена механической системы феполем). Интересно было подсчитать коэффициент эффективности для «фепольных» изобретений. Он оказался очень высоким - 23,7.

ПРИЕМЫ ОБРАЗУЮТ СИСТЕМУ

Представьте себе, что мир состоял бы только из химических элементов и их изотопов. В нем были бы возможны всего несколько сотен простых веществ. Реальный мир неизмеримо богаче, и достигнуто это богатство благодаря тому, что химические элементы вступают в соединения, образуя сложные вещества (точнее, много классов все более сложных веществ).

Так обстоит дело и с приемами. Подобно химическим элементам, они прежде всего очень редко встречаются в чистом виде. Рассмотрим, например, такой пример к приему 1: корабль разделен на блоки. Принцип дробления? Но ведь можно считать, что это прием 5 - принцип объединения: блоки объединены в корпус корабля. Фактически здесь использованы оба приема: сначала корпус разделен на блоки (дробление), а потом эти блоки собраны в единую конструкцию (объединение) - эффект достигнут именно совокупным применением двух приемов: прямого и обратного.

Как показала И. М. Фликштейн, все приемы могут образовывать пары «прием - антиприем». Некоторые из сорока приемов как раз и являются такими парами (например, отброс-регенерация частей), другие представляют собой «осколки» пар - их можно собрать в целые пары. Скажем, принцип местного качества (т. е. неоднородности) образует пару с принципом однородности. И даже такой «односторонний» прием, как увеличение числа измерений, имеет подходящий для образования пары антиприем - использование тонких пленок (т. е. переход от объема к плоскости).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Творчество как точная наука. Теория решения изобретательских задач»

Представляем Вашему вниманию похожие книги на «Творчество как точная наука. Теория решения изобретательских задач» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Творчество как точная наука. Теория решения изобретательских задач»

Обсуждение, отзывы о книге «Творчество как точная наука. Теория решения изобретательских задач» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x