Дмитрий Гусев - Удивительная логика

Здесь есть возможность читать онлайн «Дмитрий Гусев - Удивительная логика» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2010, ISBN: 2010, Издательство: Array Литагент «ЭНАС», Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Удивительная логика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Удивительная логика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Логику не изучают в школе. Тем не менее, мы пользуемся ее законами с детских лет: учимся размышлять и принимать решения, осмысливаем происходящее, постигаем разные науки и, самое главное, общаемся с другими людьми – поясняем свою позицию, возражаем, спорим, убеждаем…
Современный умный, развитый человек просто обязан владеть логическим мышлением – оно упорядочивает полученные знания, придает ясность речи, делает убедительной аргументацию и позволяет добиваться победы в дискуссиях.
Книга «Удивительная логика» требует определенного напряжения умственных сил и может служить своеобразной проверкой базовых логических способностей человека. В то же время она позволяет развить персональные интеллектуальные данные и творческие навыки поиска нестандартных решений. Одним словом, она учит мыслить.
Тестовым и развивающим целям служат и приведенные в конце издания оригинальные логические задачи.
Книга адресована в первую очередь старшеклассникам и студентам, интересующимся логикой и желающим активно использовать ее законы для достижения личного успеха.

Удивительная логика — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Удивительная логика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Обо всем или о части (Распределенность терминов в простых суждениях)

Терминами суждения называются его субъект и предикат.

Термин считается распределенным(развернутым, исчерпанным, взятым в полном объеме), если в суждении речь идет обо всех объектах, входящих в объем этого термина. Распределенный термин обозначается знаком «+», а на схемах Эйлера изображается полным кругом (кругом, который не содержит в себе другого круга и не пересекается с другим кругом) (рис. 22).

Термин считается нераспределеннымнеразвернутым неисчерпанным взятым не в - фото 17

Термин считается нераспределенным(неразвернутым, неисчерпанным, взятым не в полном объеме), если в суждении речь идет не обо всех объектах, входящих в объем этого термина. Нераспределенный термин обозначается знаком «—», а на схемах Эйлера изображается неполным кругом (кругом, который содержит в себе другой круг (рис. 23 а ) или пересекается с другим кругом (рис. 23 б ).

Например в суждении Все акулы S являются хищниками Р речь идет обо - фото 18

Например, в суждении Все акулы ( S ) являются хищниками ( Р ) речь идет обо всех акулах, значит, субъект этого суждения распределен. Однако в данном суждении речь идет не обо всех хищниках, а только о части хищников (именно о тех, которые являются акулами), следовательно, предикат указанного суждения нераспределен. Изобразив отношения между субъектом и предикатом (которые находятся в отношении подчинения) рассмотренного суждения схемами Эйлера, увидим, что распределенному термину (субъекту акулы ) соответствует полный круг, а нераспределенному (предикату хищники ) – неполный (попадающий в него круг субъекта как бы вырезает из него какую-то часть) (рис. 24).

Распределенность терминов в простых суждениях может быть различной в - фото 19

Распределенность терминов в простых суждениях может быть различной в зависимости от вида суждения и характера отношений между его субъектом и предикатом.

Проще всего устанавливать распределенность терминов в простых суждениях с помощью схем Эйлера. Достаточно уметь определять вид отношений между субъектом и предикатом в предложенном суждении и изображать их круговыми схемами. Далее еще проще – полный круг, как уже говорилось, соответствует распределенному термину, а неполный – нераспределенному. Например, требуется установить распределенность терминов в суждении Некоторые русские писатели – это всемирно известные люди. Сначала найдем в этом суждении субъект и предикат: русские писатели – субъект, всемирно известные люди – предикат. Теперь установим, в каком отношении они находятся. Русский писатель может как быть, так и не быть всемирно известным человеком, и всемирно известный человек может как быть, так и не быть русским писателем, следовательно, субъект и предикат указанного суждения находятся в отношении пересечения. Изобразим это отношение на схеме Эйлера, заштриховав ту часть, о которой идет речь в суждении (рис. 25).

И субъект и предикат изображаются неполными кругами у каждого из них как бы - фото 20

И субъект, и предикат изображаются неполными кругами (у каждого из них как бы отрезана какая-то часть), следовательно, оба термина предложенного суждения нераспределены ( S —, Р — ).

Рассмотрим еще один пример. Надо установить распределенность терминов в суждении Некоторые люди – это спортсмены. Найдя в этом суждении субъект и предикат ( люди – субъект, спортсмены – предикат) и установив отношение между ними (подчинение), изобразим его на схеме Эйлера, заштриховав ту часть, о которой идет речь в суждении (рис. 26).

Круг обозначающий предикат является полным а круг соответствующий субъекту - фото 21

Круг, обозначающий предикат, является полным, а круг, соответствующий субъекту, – неполным (круг предиката как бы вырезает из него какую-то часть). Таким образом, в данном суждении субъект нераспределен, а предикат распределен ( S —, Р + ).

Все не рыбы не являются карасями (Способы преобразования простых суждений)

Существует три способа преобразования, т. е. изменения формы, простых суждений: обращение, превращение и противопоставление предикату.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Удивительная логика»

Представляем Вашему вниманию похожие книги на «Удивительная логика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Удивительная логика»

Обсуждение, отзывы о книге «Удивительная логика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x