Микаэль Лонэ - Большой роман о математике. История мира через призму математики

Здесь есть возможность читать онлайн «Микаэль Лонэ - Большой роман о математике. История мира через призму математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Литагент 5 редакция, Жанр: Прочая научная литература, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Большой роман о математике. История мира через призму математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Большой роман о математике. История мира через призму математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Математика – это сложно». Не правда ли, мы слышим это постоянно, да и сами порой так думаем. Неужели математика – это обязательно что-то сложное и пугающее? Почему само это слово внушает страх? Математику не любят, но хотят заглянуть в замочную скважину ее непостижимых тайн.
Эта книга – путешествие в страну МАТЕМАТИКА, в которое нас приглашает ее автор Микаэль Лонэ. Каково прошлое математики, на что будет похожа математика будущего? Никто не знает, что еще смогут открыть ученые, но точно можно сказать, что нас ждет множество сюрпризов, исследований и открытий. Прочитав эту книгу, вы поверите в то, что заниматься математикой совсем не сложно.

Большой роман о математике. История мира через призму математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Большой роман о математике. История мира через призму математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эта супертеория создана на основе теории множеств, сформулированной в конце XIX в. Георгом Кантором. Несколько предложений аксиоматизации этой теории были выдвинуты в начале XX в. В период с 1910 по 1913 г. британские математики Альфред Норт Уайтхед и Бертран Рассел опубликовали трехтомный труд под названием Principia Mathematica (с лат. – « Принципы математики »). В этой работе содержались аксиомы и логические правила, исходя из которых математика была воссоздана с нуля. Один из самых известных отрывков этой работы находится на триста шестьдесят второй странице первого тома, где Уайтхед и Рассел, воссоздавая арифметику, наконец дошли до доказательства теоремы 1 + 1 = 2! Это очень забавляло авторов, так как требовалось исписать так много страниц с использованием рассуждений, которые могут поставить в тупик неискушенных математиков, чтобы доказать простейшее равенство. Ради вашего интереса ниже приводится доказательство 1 + 1 = 2 на языке символов Уайтхеда и Рассела:

Не пытайтесь разобраться в этой последовательности символов так как это - фото 117

Не пытайтесь разобраться в этой последовательности символов, так как это абсолютно невозможно, не прочитав предыдущие 361 страницу! [25]

После Уайтхеда и Рассела были сделаны и другие предложения по совершенствованию аксиом, и современная математика в значительной степени основывается на нескольких базовых аксиомах из теории множеств.

Всеобщая унификация также вызвала лингвистическую дискуссию, поскольку некоторые математики начали в это время говорить о необходимости использования единственного числа для определения дисциплины. [26]Даже сегодня встречаются еще много математиков, стремящихся навязать использование термина в единственном числе, но привычка уже глубоко засела в подсознании людей, и на текущий момент большинство склоняется к использованию формы множественного числа.

Несмотря на огромный успех теории множеств, Гильберт не был полностью удовлетворен результатом, и у него все еще оставались некоторые сомнения в достоверности аксиом, изложенных в «Принципах математики». Для того чтобы теорию можно было считать совершенной, она должна отвечать двум критериям: последовательности и полноты.

Последовательность подразумевает, что в теории не должно быть парадоксов. Не представляется возможным одновременно доказать справедливость утверждения и его противоположности. Если, например, с помощью одной из аксиом можно доказать, что 1 + 1 = 2, а также, что 1 + 1 = 3, теория непоследовательна, потому что она сама себе противоречит. Полнота же говорит о том, что в данной теории достаточно аксиом для того, чтобы иметь возможность доказать все верные в ее контексте утверждения. Если, например, в арифметической теории недостаточно аксиом, чтобы доказать, что 2 + 2 = 4, то она считается неполной.

Можно ли доказать, что «Принципы математики» соответствуют этим критериям? Можно ли быть уверенным, что мы никогда не столкнемся с парадоксами и что используемые аксиомы будут достаточно точными и универсальными, чтобы с их помощью выводить все возможные теоремы?

Программа Гильберта столкнулась с серьезной проблемой в 1931 г., когда молодой австрийский математик Курт Гёдель опубликовал свою статью под названием «О неразрешимых теоремах “Принципов математики” и других формальных математических систем» (от нем. Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme ). В этой статье приводилось доказательство того, что невозможно создать такую супертеорию, которая будет одновременно последовательной и полной! Если «Принципы математики» последовательны, то обязательно найдутся неразрешимые теоремы, которые нельзя будет ни доказать, ни опровергнуть. Поэтому невозможно определить, являются ли они истинными!

Изысканная катастрофа Гёделя

Теорема Геделя о неполноте является памятником математического мышления. Для того чтобы попытаться понять общий принцип, мы должны рассмотреть более подробно, что же такое математика. Вот два простейших арифметических утверждения:

A. Сумма двух четных чисел всегда будет четной.

B. Сумма двух нечетных чисел всегда будет нечетной.

Эти два утверждения достаточно понятные, и могут быть легко написаны на алгебраическом языке Виета. Немного подумав, вы увидите, что первое из этих утверждений, обозначенное как А, верное, в то время как второе, обозначенное как B, является ложным, так как сумма двух нечетных чисел всегда четная. Что приводит нас к следующим двум новым заявлениям:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Большой роман о математике. История мира через призму математики»

Представляем Вашему вниманию похожие книги на «Большой роман о математике. История мира через призму математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Лилия Панищева - Через призму времени…
Лилия Панищева
Отзывы о книге «Большой роман о математике. История мира через призму математики»

Обсуждение, отзывы о книге «Большой роман о математике. История мира через призму математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x