Тим Глинн-Джонс - Странности цифр и чисел.

Здесь есть возможность читать онлайн «Тим Глинн-Джонс - Странности цифр и чисел.» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2009, ISBN: 2009, Издательство: М. : РИПОЛ классик, 2009. — 208 с. : ил., Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Странности цифр и чисел.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Странности цифр и чисел.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.

Странности цифр и чисел. — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Странности цифр и чисел.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Отношение диагонали квадрата к его стороне = 1,4142.

Однако V2 известен как иррациональное число, понятие, в которое отказывался верить Пифагор. Иррациональное число — это число, которое не может быть выражено в виде дроби, например х/y, где х и у — целые числа. Один из его учеников, пытаясь выразить V2 в виде дроби, понял, что это невозможно, и ввел понятие «иррациональные числа». По легенде, его утопили за дерзость по указанию Пифагора.

1,618
*********************************************************************************************

1,618 — «золотое число» фи.

А сейчас вопрос для вас. Что общего у следующих вещей?

Великие египетские пирамиды

Пантеон

Собор Парижской Богоматери

Подсолнух

«Тайная вечеря» Леонардо да Винчи

Скрипка Страдивари

Человеческое тело

Соотношение определенных частей всех этих объектов подчиняется закону «золотого сечения» и равно приблизительно 1,618, оно называется также числом фи (открыто Фибоначчи), «золотым числом» и божественной пропорцией. Чем больше смотришь, тем больше понимаешь его значение. Оно применяется в геометрии, математике, естественных науках и искусстве, оно определяет многие измерения в жизни — в такой, какой мы ее знаем.

Фибоначчи и звук фи

Современные исследования «золотого числа» показали, что «золотая пропорция» существует в структуре системы музыкальных звуков и поэтому может применяться для создания превосходной акустики в студиях звукозаписи. Антонио Страдивари, мастер, изготавливающий скрипки в XVII веке, не имел представления об этих исследованиях, но он применял божественную пропорцию в форме своих инструментов и достиг непревзойденного качества звука. Зато Страдивари знал, что в любой музыкальной гамме существуют гармоничные отношения между 1, 3, 5 и 8-м (октава) музыкальными интервалами, которые уже в XII веке связал с «золотым числом» итальянский математик по имени Леонардо Фибоначчи (см. ниже).

Геометрия и архитектура

Начертите линию. Затем разделите ее на два отрезка так, чтобы соотношение малого отрезка к большому было равно соотношению большого отрезка к целой линии.

Отрезки золотой пропорции выражаются иррациональным числом 0618 а - фото 2

Отрезки «золотой пропорции» выражаются иррациональным числом 0,618, а соотношение отрезков, как указано выше, — 1,618. То есть длинный отрезок в 1,618 раза длиннее, чем короткий отрезок, а целая линия в 1,618 раза длиннее, чем длинный отрезок. Греки называли это «обрезать линию в крайнем и среднем соотношении», но это получило более широкую известность под таким поэтичным названием, как «золотое сечение», использование «золотой пропорции». Сходство между соотношением (1,618…) и точкой пропорции линии, где вы поставили отметку, разделяющую отрезки (0,618), не заканчивается тройным многоточием; оно длится до бесконечности.

Вот первое поразительное свойство фи:

1/фи = фи — 1,

то есть 1: 1,618 * 1,618 — 1.

Такое невозможно ни с одним другим числом. Если среди вас есть математики, они выведут из этого еще одно удивительное равенство:

фи 2= фи + 1,

то есть 1,618 х 1,618 * 2,618 = = 1,618 + 1.

Древние египтяне и греки обходились без помощи калькуляторов, которые дают число фи с бесчисленным множеством десятичных разрядов, и применяли его свойства.

Древние математики обнаружили, что «золотое сечение» можно получить при помощи обычной геометрии и, следовательно, применять его в любом масштабе, какой только пожелаешь, даже для строительства великих пирамид.

Вот один из способов, как это можно сделать. Нарисуем равнобедренный треугольник внутри окружности таким образом, чтобы вершины его углов лежали на линии окружности. Проведем от верхнего угла медиану, которая разделит его основание на две равные части. Теперь нарисуем линию, соединяющую середины равных сторон треугольника и пересекающую линию окружности. Точка пересечения медианы и этой линии (центр) будет вершиной прямого угла первичного «золотого треугольника», где катеты (а также отрезки от центра до середины стороны треугольника и до линии окружности) будут иметь отношение, равное фи.

Число фи выражается соотношениями между окружностью и другими правильными - фото 3

Число фи выражается соотношениями между окружностью и другими правильными геометрическими фигурами, и об этом было известно древним архитекторам, которые искали идеальные пропорции для своих сооружений. Каждый, кто посещал пирамиды в Египте или Пантеон в Афинах, согласится, что они впечатляют.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Странности цифр и чисел.»

Представляем Вашему вниманию похожие книги на «Странности цифр и чисел.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Странности цифр и чисел.»

Обсуждение, отзывы о книге «Странности цифр и чисел.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x