Суть того, как это делалось с помощью ДСМ-метода, состоит в следующем. Рассмотрим группу положительных примеров. Находим некоторую часть описания объектов, общую для определенной совокупности примеров из этой группы. Например, обнаруживаем в значительной части структурных формул соединений, обладающих свойством биологической активности, кольцевую структуру с фиксированным заполнением позиций в этой структуре. Тогда есть основания считать ее кандидатом в причины. Таких кандидатов может оказаться несколько. Образуем матрицу М +, в которой строки соответствуют выделенным кандидатам а i , а столбцы – интересующим нас следствиям b j (при одном интересующем нас следствии в М +будет один столбец). На пересечении строк и столбцов будем записывать оценки достоверности q k гипотез h i + j k . Об их нахождении будет сказано ниже. Для множества отрицательных примеров аналогичным образом строится другая матрица М –, в которой содержатся оценки достоверности отрицательных гипотез h i – jk . Кандидаты в причины в матрицах М +и М ?могут частично совпадать, так как положительные и отрицательные примеры не образуют полной выборки из всего множества возможных примеров.
На каждом шаге работы ДСМ-метода используются новые наблюдения, пополняющие множества положительных и отрицательных примеров. Эти новые наблюдения могут либо подтверждать сформированные гипотезы h i + j k и h i – jk либо противоречить им. В первом случае надо увеличивать оценки достоверности соответствующих гипотез, а во втором – уменьшать их. Механизм изменения оценок q k может быть различным. В ДСМ-методе он устроен следующим образом. Значение n совпадает с числом имеющихся в данный момент положительных или отрицательных примеров. Таким образом, для М +и М –значение n может оказаться различным. С ростом n растет «дробность» оценок достоверности. Оценка 1/ n играет особую роль. Она соответствует полному незнанию о достоверности гипотезы. Поэтому в начальный момент М +и М –заполнены лишь нулями, единицами и оценками 1/ n . Значения истинности и лжи могут иметь гипотезы, у которых в качестве причин даны полные описания объектов, образующих множества примеров.
Если некоторая положительная или отрицательная гипотеза h i j k имела оценку k / n , то при появлении нового примера ( n заменяется на n +1) проверяется, подтверждает или не подтверждает новый пример эту гипотезу. При подтверждении оценка k / n заменяется на ( k +1)/( n +1), а при неподтверждении новым примером ранее выдвинутой гипотезы ее оценка меняется с k / n на ( k –1)/( n +1). Таким образом, в процессе накопления новой информации оценки гипотез либо приближаются к 0 или 1, либо ведут себя каким-либо «колеблющимся» образом. В первом случае гипотеза может на некотором шаге (когда будет пройден некоторый априорно заданный нижний порог достоверности) исчезнуть из М +или М –. Во втором случае при достижении некоторого верхнего порога достоверности гипотеза может получить оценку, отражающую эмпирическую истину, и запомниться как некий установленный факт в системе или эта гипотеза сообщается человеку, работающему с ДСМ-программами. В третьем случае, если колебания оценок достаточно сильны, может также произойти исключение сформированной ранее гипотезы из тех, которые описаны в М +и М ?.
Новые гипотезы формируются не только на основании выделения в примерах определенного сходства (общей части в описании). Они могут использовать и метод различия, также сформулированный Миллем. Различие выявляется для примеров, относящихся к группам положительных и отрицательных примеров. Найденное различие служит кандидатом для гипотез, включаемых в М +или М –.
Кроме выявления кандидатов в причины а i для положительных и отрицательных гипотез в описываемом методе ищутся также тормоза, наличие которых снимает влияние а i на появление b j . В новых версиях метода в качестве а i выступают весьма сложные утверждения, в которых отдельные части описаний объектов могут быть связаны между собой произвольными логическими выражениями, например, следующего типа: «Если в объекте есть а’ и а’’ и нет а’’’ или в объекте есть а’’’’ , то свойство b имеет место».
Читать дальше