Надежда Ефремова - Тестовый контроль в образовании

Здесь есть возможность читать онлайн «Надежда Ефремова - Тестовый контроль в образовании» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2007, ISBN: 2007, Издательство: Array Литагент «Логос», Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Тестовый контроль в образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Тестовый контроль в образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Рассматриваются вопросы качества образования и пути его повышения, теория и практика педагогических измерений, формы и методы массового тестирования. Показаны возможности квалиметрического образовательного мониторинга качества обучения в масштабах страны, регионов, территорий или отдельных образовательных учреждений.
Предназначена студентам и аспирантам, а также преподавателям педагогических вузов.

Тестовый контроль в образовании — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Тестовый контроль в образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Дисперсионный анализ, в частности, позволяет выявить, являются ли две или более совокупности значимо отличающимися одна от другой по среднему значению какой–либо конкретной переменной. Для изучения вопроса о том, как можно проверить статистическую значимость отличия в среднем между различными совокупностями, должно быть ясно, что если среднее значение определенной переменной значимо различно для двух совокупностей, то переменная их разделяет.

При применении дискриминантного и дисперсионного анализа обычно имеются несколько переменных, и задача состоит в том, чтобы установить, какие из них вносят существенный вклад в дискриминацию между совокупностями. Если анализируется влияние нескольких переменных, то проводится пошаговый факторный анализ. В пошаговом анализе модель дискриминации (дискриминантных функций) строится по шагам. Точнее, на каждом шаге просматриваются все переменные и находится та из них, которая вносит наибольший вклад в различие между совокупностями. Эта переменная должна быть включена в модель на данном шаге, а далее осуществляется переход к следующему шагу. В общем, получается линейное уравнение типа:

Группа = a + b 1 x 1 + b 2 x 2 + … + b m x m ,

где a – константа, и b 1, ..., b m – коэффициенты регрессии. Интерпретация результатов задачи с двумя совокупностями следует логике применения множественной регрессии: переменные с наибольшими регрессионными коэффициентами вносят наибольший вклад в дискриминацию.

Главными целями факторного анализа являются сокращение числа переменных (редукция данных) и определение структуры взаимосвязей между переменными, т.е. классификация переменных. Поэтому факторный анализ используется или как метод сокращения данных, или как метод классификации (Wherry, 1984). Факторный анализ рассматривается как метод редукции данных. Например, измерение роста людей в дюймах и сантиметрах: имеются две переменные. Если исследовать, например, влияние различных пищевых добавок на рост, нужно ли использовать обе переменные? Вероятно, нет, так как рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется. Итак, фактически сократили число переменных и заменили две одной. Если пример с двумя переменными распространить на большее число переменных, то вычисления становятся сложнее, однако основной принцип представления двух или более зависимых переменных одним фактором остается в силе.

Факторный анализ как метод классификации включает как анализ главных компонентов, так и анализ главных факторов. Чтобы проиллюстрировать, каким образом это может быть сделано, производятся действия в обратном порядке, т. е. начинают с некоторой осмысленной структуры, а затем смотрят, как она отражается на результатах. Действительные значения факторов можно оценить для отдельных наблюдений путем выделения главных факторов. На языке факторного анализа доля дисперсии отдельной переменной, принадлежащая общим факторам, называется общностью. Поэтому дополнительной работой, стоящей перед исследователем при применении этой модели, является оценка общностей для каждой переменной, т.е. доли дисперсии, которая является общей для всех пунктов. Доля дисперсии, за которую отвечает каждый пункт, равна тогда суммарной дисперсии, соответствующей всем переменным, минус общность.

Основное различие двух моделей факторного анализа состоит в том, что в анализе главных компонент предполагается, что должна быть использована вся изменчивость переменных, тогда как в анализе главных факторов используется только изменчивость переменной, общая и для других переменных. Анализ главных компонент часто более предпочтителен как метод сокращения данных, в то время как анализ главных факторов лучше применять с целью определения структуры данных.

Для определения того, к какой группе наиболее вероятно может быть отнесен каждый объект, предназначены функции классификации, их выделяется столько же, сколько требуется групп по общим признакам. Каждая функция позволяет для каждого образца и для каждой совокупности вычислить веса классификации по формуле:

S i= c i+ w i1· x 1+w i2· x 2+ ... + w im· x m,

где S i– результат показателя классификации; обозначает соответствующую совокупность, а индексы 1, 2, ..., m обозначают m переменных; c i– константы для i – й совокупности, w ij – веса для j – й переменной при вычислении показателя классификации для i – й совокупности; X j – наблюдаемое значение для соответствующего образца j – й переменной. Можно использовать функции классификации для прямого вычисления показателя классификации для всех значений переменных. Расчет показателей классификации позволяет производить классификацию наблюдений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Тестовый контроль в образовании»

Представляем Вашему вниманию похожие книги на «Тестовый контроль в образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Тестовый контроль в образовании»

Обсуждение, отзывы о книге «Тестовый контроль в образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x