И если системы не прекращают свое существование как сложное целое, то они переходят в новый динамический режим. В этом режиме их функционирование снова поддерживается каталитическими циклами и многократно дублированными обратными связями, и производство энтропии падает до функционального минимума.
То, как динамические системы реагируют на дестабилизирующие изменения в окружающей среде, имеет первостепенное значение для понимания динамики эволюции в различных природных царствах. Динамические системы развиваются во времени не гладко и непрерывно, а внезапными скачками и всплесками. Реальные системы могут претерпевать серию потерь устойчивости и фаз неопределенности, так как они обладают многими устойчивыми состояниями, и когда одно стационарное состояние катастрофически теряет стабильность, у системы остаются в запасе остальные устойчивые состояния. Чем дальше сдвигаются системы от термодинамического равновесия, тем более чувствительна их структура к изменению и тем более сложными становятся поддерживающие их обратные связи и каталитические циклы.
Согласно современным научным представлениям, отбор среди множества динамически функциональных альтернативных стационарных состояний заранее не предопределен. Такой отбор обусловлен не начальными условиями и не манипуляциями с критическими значениями параметров. В критические моменты своей эволюции, когда системы критически дестабилизированы и находятся в хаотическом состоянии, сложные системы действуют недетерминированно: одна из многочисленных потенциально возможных внутренних флуктуации усиливается, и усилившаяся флуктуация с огромной скоростью распространяется внутри системы. Усилившаяся, или «нуклеированная», флуктуация определяет новый динамический режим системы и ее новое стационарное состояние.
Наблюдаемая динамика эволюции сложных систем стимулирует развитие новых теоретических средств. В особенности это относится к разрывным, нелинейным изменениям в динамических системах, для описания которых плохо пригодно дифференциальное исчисление — раздел математики, традиционно используемый для моделирования изменений. В своей стандартной версии дифференциальное исчисление предполагает, что изменение гладко и непрерывно.
Современный раздел классической динамики — теория динамических систем — возник, чтобы решить проблему описания негладких изменений. Специалисты по теории динамических систем разработали математические модели поведения сложных систем не только потому, что эти модели представляют самостоятельный, чисто теоретический интерес, но и имея в виду возможные приложения к сложным системам в реальном мире. Модели (представляющие собой обыкновенные дифференциальные уравнения, уравнения в частных производных эволюционного типа и конечно-разностные уравнения, как отдельные, так и их системы) воспроизводят динамические аспекты поведения сложных систем. Разработка имитационных моделей не ограничивается областью их реального применения: специалисты по теории динамических систем исследуют всевозможные модели в рамках возможностей используемого математического аппарата и затем ищут те классы эмпирических систем, к которым могут быть применены построенные модели. Такой гипотетико-дедуктивный подход порождает множество разнообразных моделей, позволяет воспроизводить множество режимов и сулит существенно расширить наше понимание разрывных преобразований в поведении множества различных сложных систем.
На языке теории динамических систем можно утверждать, что статические, периодические и хаотические аттракторы управляют долговременным поведением сложных систем. Статический аттрактор «захватывает», словно в ловушку, траекторию состояний системы — ее временной ряд, в результате чего система переходит в состояние покоя, причем состояние устойчивое. Периодический аттрактор захватывает траекторию в цикле состояний, повторяющихся за данный интервал времени; в этом случае система переходит в колебательное, или осцилляторное, состояние. Наконец, хаотический аттрактор порождает квазислучайную, хаотическую последовательность состояний; система не переходит ни в состояние покоя, ни в колебательный режим, а продолжает вести себя хаотично, но отнюдь не беспорядочно.
В последние годы хаотическое поведение было обнаружено у многих самых различных систем. Такое поведение обнаруживают столь различные процессы, как течение жидкостей и перемешивание веществ при отвердевании. Явление турбулентности также может служить примером хаотического поведения: оно было известно с XIX века, но причины его так и не были до конца поняты. К 1923 году гидродинамические эксперименты продемонстрировали возникновение круговых вихрей Тейлора; эти вихри возникают, когда скорость перемешивания в жидкости превышает некоторое критическое значение. Дальнейшее увеличение скорости перемешивания приводит к новым скачкообразным преобразованиям и в конечном счете к турбулентности. Турбулентность — парадигма для хаотического состояния.
Читать дальше