Предложения о сведении любой структуры к набору достаточно простых (в смысле математического описания) геометрических фигур являются перспективными. Но! По формальным признакам, что осложняет перенос решений в ЭВМ, возникают особые точки ; где решения неоднозначны.
Предложенная задача Ходжи и является одной из попыток как-то скорректировать неоднозначность решения. При ее решении представляется наиболее разумным применить аналого-цифровой подход.
Известная нам Вселенная в своей основе состоит из полевых структур, в частности атомных и субатомных, образующих и так называемую материю-субстрат с более или менее определенными границами. Каждая частица имеет границу объема, далее которой она перестает быть сама собой. Определение этой границы является аналоговой операцией, констатирующей, где происходит переход количества в качество. Далее происходит просто цифровой счет. Это и есть наиболее общее решение задачи. Автор считает, что, скоординировав работу известных ему специалистов и финансируя эту работу так, как она того заслуживает, и посвятив ей лет 5–6, он мог бы получить как одно из решений этой задачи, так и несколько сопутствующих решений задач, здесь не приведенных по определению эталонных значений и систем координат, но предпочитает оставить эту рутинную (в хорошем смысле слова) работу коллективам математиков и физиков. К тому же примерная стоимость экспериментов и расчетов на 2 порядка превысит размер объявленной премии.
Здесь важно определить уровень размерности, где указанный цифровой счет производится. Например там, где присутствует гладкая с точки зрения технических целей поверхность, при приближении измерительного эталона к размеру атомных частиц поверхность становится достаточно сложной и не совсем ровной. Значит, здесь следует решить более общую задачу, такую как выбор или создание системы координат, назначение эталона единицы величины и «сшивание» решений в особых точках.
Задачи типа определения, где какая поверхность у кольца Мебиуса, или геометрической фантазии Эшера очень интересны, познавательны и стимулируют воображение на создание оригинальных идей и решений. Однако здесь допускается одна маленькая хитрость — не указывается, в какой системе координат все это существует, так как в этом случае вся таинственность пропадает.
Если мы, например, рассмотрим кольцо Мёбиуса во внешней трехмерной координатной системе с фиксированным положением нуля отсчета и «+» или «-», то внешним или внутренним будет проекция поверхности на соответствующую плоскость. И всё! Это дает абсолютно однозначное решение. Если положение кольца изменилось, соответственно изменятся и положения проекций. Если система координат связана с поверхностью кольца, то там вообще сложная, но двухмерная задачка. Все зависит от формы и полноты задания граничных условий и даже от более точного определения, что считать наружной, а что — внутренней стороной.
Гипотеза Пуанкаре о соразмерности топологически разных объектов также является очень важной практической задачей реальной человеческой деятельности. Например, как из материала поверхности шара скроить тороид, при этом выполнив какой-то критерий вроде одного разреза или равенства площадей поверхностей. Однако перевод решения в N-мерное (более трех) пространство делает эту задачу более подходящей для развития математической логики, а не для решения практических задач, реализация которых все равно происходит в трехмерном мире.
В следующей задаче производится попытка связать законы микро- и макромиров на основе системы непротиворечивых уравнений.
Сразу отметим, что в поставленной коллективом ученых из Clay Mathematics Institute задаче отсутствует математическая запись уравнения, которое должно быть уточнено или расширено (этим, кстати говоря, грешат многие заказчики научных и технологических решений, не затрудняющие себя определением граничных условий задачи, тем самым-как бы «размывая» цель исследования и затрудняя поиск приемлемого ответа). Э го также дает возможность недобросовестному заказчику отказать в выдаче обещанного вознаграждения.
В каноническом виде уравнение Навье — Стокса определяет движение несжимаемой вязкой жидкости и записывается в виде

где v — вектор скорости; t — время; F — вектор напряженности массовых сил; ρ — плотность среды; Р — гидродинамическое давление; n — кинематическая вязкость.
Читать дальше