Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь есть возможность читать онлайн «Шинтан Яу - Теория струн и скрытые измерения Вселенной» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2012, ISBN: 2012, Издательство: Питер, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория струн и скрытые измерения Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория струн и скрытые измерения Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория струн и скрытые измерения Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1994 году Эдвард Виттен и его коллега — физик Натан Зайберг обнаружили намного более простой метод исследования геометрии четырехмерных пространств, несмотря на то что их подход основывался не собственно на геометрии, как метод Дональдсона, а на одной из теорий из области физики элементарных частиц — так называемой теории суперсимметрии . «В новом уравнении содержится вся информация, которая содержалась и в старом, — прокомментировал это открытие Таубс. — Разница лишь в том, что извлечь эту информацию из нового уравнения в тысячу раз проще». [39] Ibid. Таубс, как и многие другие, использовал подход Зайберга-Виттена для расширения наших знаний о геометрических структурах в четырехмерном пространстве, понимание которых на сегодняшний день остается весьма условным, но тем не менее очень важным для ответа на вопрос о природе пространства-времени в общей теории относительности.

Виттен показал, что для большей части четырехмерных многообразий число решений уравнения Зайберга-Виттена определяется исключительно топологией соответствующего многообразия. После этого Таубс доказал теорему, согласно которой количество решений этих уравнений, предопределенное топологией многообразия, совпадает с числом подпространств или кривых определенного типа ( семейства ), которые можно поместить в данном многообразии. Определив количество кривых конкретного типа, соответствующих данному многообразию, можно как определить его геометрию, так и получить о нем много другой важной информации. Таким образом, справедливым будет заметить, что теорема Таубса позволила значительно продвинуться в области исследования подобных пространств.

Взглянув на историю исследований четырехмерных пространств, начиная с работ физиков Янга и Миллса в 1950-х, можно обнаружить, что в своем развитии эта теория проходила этапы, на которых физика оказывала влияние на математику, плавно переходящие в этапы, на которых математика влияла на физику. Несмотря на свое физическое происхождение, теория Янга-Миллса возникла не без участия геометрии, которая помогла лучше понять природу сил, объединяющих элементарные частицы в единое целое. Подойдя к данной проблеме с другой стороны, геометр Дональдсон использовал теорию Янга-Миллса для того, чтобы понять топологию и геометрию четырехмерных пространств. Тот же взаимовыгодный обмен между математикой и физикой был продолжен в работе физиков Зайберга и Виттена и в последовавших за ними работах. Таубс так подвел итог этой бурной истории: «Однажды на Землю прилетел марсианин, дал нам уравнения Янга-Миллса и улетел. Мы изучали их, и в конце концов возникла теория Дональдсона. Много лет спустя марсианин прилетел вновь и дал нам уравнения Зайберга-Виттена» [40] Mathematical Institute at the University of Oxford, “Chart the Realm of the 4th Dimension,” http://www2.maths.ox.ac.uk/~dusautoy/2soft/4D.htm . . Хотя я и не могу поручиться за достоверность истории Таубса, пожалуй, из всех объяснений, которые я когда-либо слышал, это — наиболее правдоподобное…

Второе важнейшее достижение геометрического анализа — и многие поставили бы именно его на первое место по важности — относится к доказательству знаменитой гипотезы, сформулированной в 1904 году Анри Пуанкаре и на протяжении более столетия остававшейся важнейшей проблемой трехмерной топологии. Основной причиной, по которой я считаю эту гипотезу выдающейся, является возможность сформулировать ее в виде одного простого утверждения, которое, тем не менее, держало в напряжении все математическое сообщество на протяжении сотни лет. В двух словах, эта гипотеза утверждает, что компактное трехмерное пространство топологически эквивалентно сфере, если любая петля, которую можно построить в данном пространстве, может быть стянута в точку без нарушения при этом целостности петли или пространства. Как уже было сказано ранее в данной главе, пространство, удовлетворяющее этому условию, содержит тривиальную фундаментальную группу.

Гипотеза Пуанкаре звучит весьма просто, но на самом деле она далеко не очевидна. Рассмотрим двухмерный аналог этой задачи, не обращая внимания на то, что в действительности проблема сформулирована для трех измерений (и решить ее в этом случае намного сложнее). Представим себе сферу, например глобус, по экватору которого проходит резинка. Теперь легонько подтолкнем эту ленту в направлении северного полюса так, чтобы при этом она не переставала касаться поверхности. Если резиновая лента достаточно эластична, то, достигнув полюса, она фактически стянется в одну точку. В случае тора ситуация будет иная. Представим себе, что резиновая лента проходит через дырку тора и выходит с противоположной стороны. В данном случае стянуть резиновую ленту в одну точку, не разрезая при этом тор, невозможно. Резиновую ленту, идущую вокруг внешней поверхности тора, можно переместить в его верхнюю часть и оттуда уже спустить на внутреннюю поверхность. Однако пока лента находится на поверхности тора, стянуть ее в точку не удастся. По этой причине для тополога сфера имеет фундаментальное отличие от тора или любого другого многообразия, имеющего одну или несколько дырок. Гипотеза Пуанкаре, по сути, представляет собой вопрос, чем в действительности является топологическая сфера.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория струн и скрытые измерения Вселенной»

Представляем Вашему вниманию похожие книги на «Теория струн и скрытые измерения Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория струн и скрытые измерения Вселенной»

Обсуждение, отзывы о книге «Теория струн и скрытые измерения Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x