Шинтан Яу - Теория струн и скрытые измерения Вселенной

Здесь есть возможность читать онлайн «Шинтан Яу - Теория струн и скрытые измерения Вселенной» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2012, ISBN: 2012, Издательство: Питер, Жанр: Прочая научная литература, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теория струн и скрытые измерения Вселенной: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теория струн и скрытые измерения Вселенной»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теория струн и скрытые измерения Вселенной», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 21Теорему Пифагора чаще всего иллюстрируют для случая двух измерений - фото 9

Рис. 2.1.Теорему Пифагора чаще всего иллюстрируют для случая двух измерений, изображая прямоугольный треугольник, в котором сумма квадратов катетов равна квадрату гипотенузы: a 2+ b 2= c 2 . Однако, как показано на приведенном рисунке, эта теорема так же верна и для случая трех и большего числа измерений a 2+ b 2+ c 2= d 2

В своем знаменитом сочинении Евклид заложил основы не только геометрии, но и всей математики, которая неразрывно связана с тем принципом аргументации, который сейчас называют Евклидовым: любое доказательство начинается с четкого определения понятий и набора однозначно установленных аксиом или постулатов (эти два слова являются синонимами) и осуществляется при помощи строгих логических умозаключений; доказанная теорема, в свою очередь, может быть положена в основу доказательства дальнейших утверждений. Евклид, пользуясь исключительно этим методом, доказал в общей сложности больше четырехсот теорем, сведя таким образом воедино все геометрические знания своего времени.

Стэнфордский математик Роберт Оссерман объяснил столь безапелляционное приятие метода Евклида следующим образом: «В основе всего лежало чувство уверенности, что в мире абсурдных суеверий и сомнительных догадок утверждения, приведенные в “Началах”, являются твердо установленной истиной без малейшей тени сомнения». Эдна Сент-Винсент Миллей выразила аналогичное восхищение в своем стихотворении «Евклид один лишь видел обнаженной красоту». [17] Edna St. Vincent Millay, “Euclid Alone Has Looked on Beauty Bare,” quoted in Robert Osserman, Poetry of the Universe (New York: Anchor Books, 1995), p. 6.

Следующим человеком, внесшим решающий вклад в предмет нашего рассказа, — впрочем, без какого-либо пренебрежения к заслугам других достойных математиков, о достижениях которых мы не упомянули — можно считать Рене Декарта. Как уже говорилось в предыдущей главе, Декарт значительно расширил сферу исследований геометрии, введя систему координат, позволившую математикам рассуждать о пространствах любых размерностей и использовать алгебру при решении геометрических задач. До того как Декарт преобразовал геометрию, ее область исследований была ограничена прямыми линиями, окружностями и коническими сечениями — такими кривыми, как параболы, гиперболы и эллипсы, которые можно получить, рассекая плоскостью бесконечный конус под разными углами. Появление системы координат дало возможность описывать при помощи уравнений очень сложные фигуры, которые невозможно вообразить каким-либо другим способом. Рассмотрим, к примеру, уравнение x n+ y n= 1 . При помощи декартовых координат решить это уравнение и нарисовать соответствующую кривую не составит труда. Однако до появления системы координат было непонятно, как ее изобразить. В местах, которые ранее считались непроходимыми, Декарт указал путь, по которому двигаться дальше.

Этот путь стал еще четче, когда через пятьдесят лет после Декарта Исаак Ньютон и Готфрид Лейбниц, разделяющие идеи Декарта в области аналитической геометрии, создали дифференциальное и интегральное исчисление. На протяжении десятилетий и столетий новые инструменты дифференциального и интегрального исчисления внедрялись в геометрию такими математиками, как Леонард Эйлер, Жозеф Лагранж, Гаспар Монж и, в первую очередь, Карл Фридрих Гаусс, под чьим руководством в 1820-х достигла своего совершеннолетия так называемая дифференциальная геометрия . Дифференциальная геометрия предполагает использование декартовой системы координат для описания поверхностей, которые затем могут быть детально проанализированы с помощью методов дифференциального исчисления; дифференцирование — это метод нахождения угла наклона любой гладкой кривой.

Создание дифференциальной геометрии, которая продолжила свое развитие и после Гаусса, стало величайшим достижением. С помощью инструментов дифференциального исчисления геометры описывали свойства кривых и поверхностей с намного большей точностью, чем это было возможно ранее. Подобные сведения можно получить путем дифференцирования или, что эквивалентно, путем нахождения производных, показывающих, как изменяется функция в ответ на изменение аргумента. Функцию можно рассматривать как алгоритм или формулу, в которой каждому числу, поданному на вход (значению аргумента), ставится в соответствие некоторое число на выходе (значение функции). Например, в функции y = x 2 значение аргумента x подается на вход, а на выходе получается значение функции y . Функция однозначна: если вы будете подставлять в нее одно и то же значение x, то всегда получите одно и то же значение y , так, в нашем примере, подставляя x = 2 , вы всегда получите y = 4 . Производная характеризует отношение приращения значения функции к заданному приращению аргумента; величина производной отражает чувствительность функции к незначительным изменениям аргумента.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теория струн и скрытые измерения Вселенной»

Представляем Вашему вниманию похожие книги на «Теория струн и скрытые измерения Вселенной» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теория струн и скрытые измерения Вселенной»

Обсуждение, отзывы о книге «Теория струн и скрытые измерения Вселенной» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x