Слово геометрия , произошедшее от слов гео (земля) и метрео (измеряю) изначально значило «измерение земли». Но сейчас это слово используется в гораздо более общем значении — «измерение пространства», хотя пространство само по себе и не является достаточно строго определяемым понятием. Как сказал однажды Георг Фридрих Бернхард Риман: «Геометрия предполагает заданными заранее как понятие пространства, так и первые основные понятия, которые нужны для выполнения пространственных построений, давая таким образом лишь номинальные определения понятий». [14] Georg Friedrich Bernhard Riemann, “On the Hypotheses Which Lie at the Foundations of Geometry,” lecture, Gottingen Observatory, June 10, 1854.
Как бы странно это ни прозвучало, но мы предпочитаем сохранять понятие пространства весьма расплывчатым по той причине, что оно подразумевает многое, для чего мы не имеем других обозначений. Таким образом, эта неопределенность в каком-то плане удобна. К примеру, когда мы рассматриваем вопрос о размерности пространства или размышляем о его форме как единого целого, мы могли бы отнести эти рассуждения и ко всей Вселенной. В более узком значении понятие пространства может относиться как к весьма простой геометрической конструкции, такой как точка, линия, плоскость, сфера или тор — все те типы геометрических фигур, которые способен нарисовать студент, так и к гораздо более сложным и неизмеримо более трудноизображаемым объектам.
Представим, к примеру, что у нас имеется некая совокупность точек, расположенных совершенно случайным образом, и что при этом абсолютно невозможно ввести определение расстояния между ними. С точки зрения математики это пространство не будет иметь геометрии; это будет просто случайный набор точек. Однако стоит лишь ввести некую измерительную функцию, дающую возможность рассчитывать расстояния между любыми двумя точками, называемую метрикой, как пространство неожиданно приобретает упорядоченность. Теперь оно характеризуется определенной геометрией. Иными словами, метрика предоставляет всю информацию, необходимую для того, чтобы сделать вывод о форме пространства, на котором она задана. Вооружившись способом измерять форму пространства, можно с большой точностью определить, является ли пространство плоским, и установить степень его отклонения от плоскости, или, иными словами, вычислить кривизну пространства, что я лично нахожу наиболее интересным.
Таким образом, геометрия представляет собой нечто большее, чем просто набор методов для измерения расстояний — что, разумеется, не принижает измерительную функцию геометрии, которой я также восхищаюсь, — геометрия является одним из основных доступных нам способов исследования Вселенной. Физика и космология уже по одному своему названию играют главные роли в понимании Вселенной. Роль геометрии, хотя и менее заметна, но так же важна. Я даже рискну сказать, что геометрия не только заслуживает места за одним столом с физикой и космологией, но во многих отношениях она и является этим столом.
Это действительно так, поскольку вся вселенская драма — сложнейший танец частиц, атомов, звезд и других объектов, постоянно изменяющихся, движущихся, взаимодействующих, — разыгрывается на подмостках, называемых «пространством», и ее никогда не понять без понимания существенных особенностей самого пространства. Пространство представляет собой нечто гораздо большее, чем просто театральный задник, по сути оно обусловливает важнейшие физические свойства тех объектов, которые в нем находятся. Действительно, как принято считать в настоящее время, материя или частицы, покоящиеся или движущиеся в пространстве, на самом деле являются частями этого пространства, или, точнее, пространственно-временного континуума. Геометрия в свою очередь может накладывать ограничения на поведение пространственно-временного континуума и физических систем в целом — ограничения, которые можно обнаружить исходя исключительно из принципов математики и логики.
Рассмотрим, например, климат Земли. Хотя это и не очевидно, геометрия оказывает существенное влияние на климат — в этом случае основную роль играет форма нашей планеты. Если бы мы жили не на поверхности сферы, а на поверхности тора или бублика, то наша жизнь — так же, как и климат нашей планеты, — была бы совершенно другой.
На сфере все ветры не могут дуть одновременно в одном и том же направлении (например, восточном), так же как не могут иметь одно и то же направление одновременно все океанические течения (как было показано в предыдущей главе). Неизбежно будут существовать точки, такие как Северный и Южный полюсы, где ветры или течения больше не будут иметь восточного направления, в таких точках исчезает само понятие «восточное направление». Иная ситуация складывается на тороидальной поверхности, где подобных препятствий нет, и ветры или течения могут перемещаться в одном и том же направлении по всей поверхности без каких-либо помех. Топологические различия, несомненно, влияют на глобальные процессы циркуляции, однако, если вас интересуют более конкретные климатические последствия, такие как различие сезонных изменений на поверхности сферы и тора, — вам лучше спросить об этом метеоролога.
Читать дальше