Эти принципы, являющиеся ключевыми для евклидовой геометрии, не выполняются в искривленных пространствах. Рассмотрим сферическое пространство, подобное поверхности глобуса. Если смотреть на глобус со стороны экватора, линии меридианов кажутся параллельными, поскольку все они перпендикулярны экватору. Но если вы проследуете по ним в одном из двух направлений, то увидите, что они в конце концов сходятся на Северном и Южном полюсах. Этого не произойдет в плоском евклидовом пространстве, таком как карта в проекции Меркатора, на которой две линии, перпендикулярные третьей, являются действительно параллельными и никогда не пересекаются.
В неевклидовом пространстве сумма углов треугольника может быть или больше, или меньше, чем 180°, в зависимости от того, как искривлено пространство. Если пространство, подобно сфере, имеет положительную кривизну, сумма углов треугольника всегда будет больше 180°. И напротив, если пространство имеет отрицательную кривизну, как внутренняя часть седла, сумма углов треугольника всегда будет меньше 180°. Узнать кривизну пространства можно, определив величину, на которую сумма углов треугольника больше или меньше 180°.
Гаусс также ввел понятие внутренней геометрии — идею, согласно которой объект или поверхность имеет свою собственную кривизну (так называемую гауссову кривизну), которая не зависит от того, как этот объект располагается в пространстве. Рассмотрим для примера лист бумаги. Можно ожидать, что его кривизна равна нулю, и так оно и есть. Теперь свернем этот лист бумаги в цилиндр. Двухмерная поверхность цилиндра, согласно Гауссу, имеет две главные кривизны, проходящие в направлениях, перпендикулярных друг другу: первая кривизна относится к окружности и имеет величину 1/ r , где r — это радиус основания цилиндра. Если r = 1, то эта кривизна также равна единице. Вторая кривизна проходит вдоль образующей цилиндра, которая представляет собой прямую линию. Кривизна прямой линии, очевидно, равна нулю, поскольку прямая — она и есть прямая. Гауссова кривизна цилиндра, как любого другого двухмерного объекта, равна произведению одной кривизны на вторую, которое в нашем случае равно 1×0 = 0. Таким образом, в понятиях собственной кривизны цилиндр представляет собой то же самое, что и лист бумаги, из которого он свернут, — он совершенно плоский. Нулевая собственная кривизна цилиндра обусловлена тем, что цилиндр можно сделать из листа бумаги, не растягивая и не деформируя его. Иными словами, измерения расстояний между любыми двумя точками на поверхности листа — вне зависимости от того, разложен ли лист на столе или свернут в трубочку, — дадут одинаковые результаты. Это значит, что геометрия и, следовательно, собственная кривизна листа бумаги остаются неизменными вне зависимости от того, плоский этот лист или свернутый.
Аналогично, если бы удалось сделать из цилиндра тор, соединив его концы вместе — также без растяжений и деформаций, — то внутренняя кривизна полученного тора все равно осталась бы равной внутренней кривизне цилиндра, то есть нулю. На практике, однако, сделать так называемый плоский тор — по крайней мере в двух измерениях — невозможно по причинам, которые будут обсуждаться далее (в четвертой главе). Но теоретически подобный объект (называемый абстрактной поверхностью) изготовить можно, и он столь же важен для математики, как и те объекты, которые мы называем реальными.
Рис. 2.4.Тороидальная (имеющая форму бублика) поверхность может быть совершенно «плоской» (имеющей нулевую гауссову кривизну), поскольку ее можно изготовить, сворачивая лист бумаги в трубку или цилиндр и затем соединяя концы полученного цилиндра
С другой стороны, сфера довольно существенно отличается от цилиндра или плоского тора. Рассмотрим, к примеру, кривизну сферы радиуса r . В этом случае кривизна одинакова по всей поверхности сферы, и ее можно определить как 1/ r 2. Мы видим, что на поверхности сферы все направления эквивалентны, что явно неверно в случае цилиндра или бублика. Именно по этой причине не важно, как ориентирована сфера в трехмерном пространстве; маленький жучок, живущий на ее поверхности, скорее всего, не замечает пространственной ориентации сферы и все, что его беспокоит и дается ему в ощущениях, — это геометрия его локального двухмерного мира.
Читать дальше