Мой коллега имеет в виду, что мы могли бы получить некоторое представление о квантовой геометрии и ее следствиях путем применения теории струн в контролируемых условиях пространства Калаби-Яу, — эта тема обсуждается на протяжении всей этой книги. Один из перспективных путей заключается в поиске ситуации в теории струн, когда геометрия ведет себя иначе, чем в классическом приближении. Ярким примером является изменяющий топологию переход, который иногда может проходить гладко в теории струн, но не в обычных физических теориях. «Если вы ограничены стандартными геометрическими методами, под которыми я всегда понимаю сохранение римановых метрик, то топология не может изменяться», — говорит Моррисон. [292] Morrison, interview with author, May 29, 2008.
Причина, по которой топологическое изменение считается большой проблемой, состоит в том, что вы не можете превратить одно пространство в другое, не разорвав его каким-то образом, так же как вы не можете очистить яйца, не разбив скорлупы. Или превратить сферу в бублик, не проделав дырку.
Но протыкание отверстия в пространстве, которое в остальных частях остается гладким, создает сингулярность. Это в свою очередь создает проблемы для сторонников общей теории относительности, которым теперь придется бороться с бесконечной кривизной и тому подобными вещами. Теория струн, однако, может обойти эту проблему. Например, в 1987 году мы с моим аспирантом Гангом Тианом продемонстрировали метод, известный как флоп-переход, который дает множество примеров многообразий Калаби-Яу, тесно связанных между собой, но топологически различных.
Конифолдные переходы, которые мы обсуждали в десятой главе, представляют собой еще более драматический пример топологического изменения с участием пространства Калаби-Яу. Давайте представим двухмерную поверхность типа футбольного мяча, расположенного внутри пространства Калаби-Яу, как показано на рис. 14.3. Мы можем сжать футбольный мяч до узкой полосы (струны), которая, в конце концов, исчезнет, оставив вместо себя разрыв — вертикальную щель, в ткани пространства-времени. Затем мы будем наклонять щель, толкая «ткань» над и под ней навстречу друг другу. Таким образом, вертикальная щель постепенно превратится в горизонтальную щель, в которую мы можем вставить, а затем снова расширить другой футбольный мяч. Футбольный мяч сейчас оказался «перестроенным» относительно своей первоначальной конфигурации. Если эту процедуру проделать математически точно, то есть разрывая пространство в определенный момент, открывая его, переориентируя разрыв и вставляя новую двухмерную поверхность со смещенной ориентацией обратно в шестимерное пространство, вы получите топологически другое пространство Калаби-Яу и, таким образом, совершенно иную форму по сравнению с исходной.
Рис. 14.3.Для того чтобы представить флоп-переход, необходимо сделать вертикальный разрез в двухмерной ткани. Затем, нажимая на ткань сверху и снизу, толкать ее так, чтобы вертикальная щель становилась все шире и шире и в конечном счете превратилась в горизонтальную щель. Таким образом, щель или разрыв, который когда-то находился в вертикальном положении, в настоящее время «перестроился», то есть перевернулся на другую сторону. Многообразия Калаби-Яу могут подвергаться флоп-переходам и когда внутренние структуры переворачиваются аналогичным образом (часто после первоначального разрыва), в результате чего получаются многообразия, топологически отличные от исходных. Флоп-переход особенно интересен тем, что четырехмерная физика, связанная с этими многообразиями, остается той же самой, несмотря на различия в топологии
Флоп-переход представляет математический интерес, поскольку он показывает, как, начав с одного пространства Калаби-Яу со знакомой топологией, в конечном итоге получить другие, неизвестные нам пространства Калаби-Яу. В результате, мы, математики, можем использовать этот подход для создания с целью исследования большего количества пространств Калаби-Яу или, иначе говоря, «поиграть» с ними. Но я также подозреваю, что флоп-переход имеет некоторый физический смысл. Оглядываясь назад и оценивая прошлые события, любой может подумать, что я наделен даром предвидения, хотя это не тот случай. Я чувствую, что любая общая математическая операция, которую мы можем выполнить с Калаби-Яу, также должна иметь применение в физике. Я попросил Брайана Грина, который был моим постдоком в то время, разобраться в этом вопросе, а также напомнить об этой идее нескольким другим физикам, которые, на мой взгляд, положительно воспримут ее. Грин несколько лет игнорировал мои советы, но в 1992 году наконец-то начал работать над задачей вместе с Полом Эспинволлом и Моррисоном. Глядя на то, что они придумали, стоило подождать эти несколько лет.
Читать дальше