Вафу беспокоит возможный «конец геометрии», что вполне справедливо, и не следует к этому относиться как к трагедии — греческой или какой-либо другой. Крушение классической геометрии следует приветствовать, а не бояться, предполагая, что мы можем заменить ее чем-то лучшим. Область геометрии постоянно менялась на протяжении тысячелетий. Если бы древнегреческие математики, в том числе сам великий Евклид, сегодня присутствовали на семинаре по геометрии, то они бы представления не имели, о чем мы говорим. А в скором времени мои сверстники и я окажутся в той же лодке по отношению к геометрии будущих поколений. Хотя я не знаю, как геометрия в конечном итоге будет выглядеть, я верю, что она будет жива и здорова и будет чувствовать себя даже лучше, чем когда-либо, и будет помогать в разных ситуациях лучше и чаще, чем в настоящее время.
Джо Полчински, физик из Санта-Барбары, как будто соглашается с этой точкой зрения. Он не считает, что крушение обычной геометрии на планковском масштабе является сигналом о «конце пути» для его любимой дисциплины. «Обычно, когда мы узнаем что-то новое, старые вещи не следует отбрасывать, но переосмысливать и расширять их применение», — говорит Полчински. Перефразируя Марка Твена, он замечает, что известия о смерти геометрии сильно преувеличены. За короткий период в конце 1980-х годов, добавляет он, геометрия стала «старой шляпой» в физике. Устарела. «Но затем она вернулась более сильной, чем когда-либо. Учитывая, что до настоящего времени геометрия играла такую важную роль в открытиях, у меня есть все основания полагать, что это часть чего-то большего и лучшего, а не то, что, в конце концов, будет отброшено». [284] Joe Polchinski (University of California, Santa Barbara), interview with author, August 31, 2007.
Вот почему я утверждаю, что квантовая геометрия, или как вы ее называете, должна стать «расширением» геометрии, по выражению Полчински, так как нам необходимо нечто, что может работать и на большом масштабе, как классическая геометрия, и в то же время обеспечивать надежные физические описания на ультрамалых масштабах.
Эдвард Виттен поддерживает эту точку зрения. «То, что мы сейчас называем “классической геометрией” значительно шире, чем то, что понимали под геометрией всего столетие назад, — говорит он. — Я полагаю, что теория на планковском масштабе, весьма вероятно, включает в себя новый вид обобщенной геометрии или расширение этого понятия». [285] Edward Witten (Institute for Advanced Study), e-mail letter to author, January 30, 2007.
Обобщения такого рода, связанные с теорией, действительной в определенной области, и расширение сферы ее применимости на еще большую область делались в геометрии неоднократно. Вспомним создание неевклидовой геометрии. «Если бы вы спросили Николая Лобачевского о геометрии его молодости», то есть геометрии конца XVIII века, то «он, вероятно, перечислил бы пять постулатов Евклида, — говорит Адамс. — Если бы вы спросили его позже, когда он стал великим ученым, то он мог бы сказать, что существует пять постулатов, но, может быть, они не нужны нам все». [286] Adams, interview with author, May 23, 2008.
В частности, он выделил бы пятый постулат Евклида о том, что параллельные линии никогда не пересекаются, как необязательный. В конце концов, именно Лобачевский понял, что, исключив постулат о параллельных, он создал совершенно новую геометрию, которую мы называем гиперболической геометрией. Но из того, что параллельные линии не пересекаются на плоскости, то есть в области, где работает евклидова геометрия, вовсе не следует, что это же будет иметь место на поверхности сферы. Например, мы знаем, что все меридианы на глобусе сходятся на северном и южном полюсах. Аналогично, хотя сумма углов треугольника, нарисованного на плоскости, всегда равна 180 градусам, на поверхности сферы сумма этих углов всегда больше 180 градусов, а на поверхности седла их сумма меньше 180 градусов.
Лобачевский опубликовал свои спорные идеи по неевклидовой геометрии в 1829 году, и они были похоронены в малоизвестном русском журнале «Казанский вестник». Несколько лет спустя венгерский математик Янош Бойяи опубликовал свой собственный трактат по неевклидовой геометрии, но работа, к сожалению, стала приложением к книге, написанной его отцом, математиком Фаркашем Бойяи. Примерно в то же время Гаусс разрабатывает аналогичные идеи в области дифференциальной геометрии. Он сразу понял, что эти новые понятия криволинейных пространств и «внутренней геометрии» переплетаются с физикой. «Геометрию следует относить не к арифметике, которая является чисто априорной наукой, а к механике», — говорил Гаусс. [287] Turnbull WWW Server, “Quotations by Gauss,” School of Mathematical Sciences, University of St. Andrews, St. Andrews, Fife, Scotland, February 2006, http://wwwgroups.dcs.st-and.ac.uk/-history/Quotations/Gauss.html .
Как мне кажется, он имел в виду, что геометрия, в отличие от арифметики, должна опираться на эмпирическую науку, а именно на физику, которая в то время называлась механикой, чтобы ее описания были весомыми. Гауссова внутренняя геометрия поверхностей заложила фундамент для римановой геометрии, которая, в свою очередь, привела к блестящим идеям Эйнштейна о пространстве-времени.
Читать дальше