Хотя я занят различными проектами, я время от времени возвращаюсь к этой задаче. И несмотря на мой интерес к другим областям математики и физики, я постоянно возвращаюсь к геометрии. Если спокойствие достигается через понимание, то геометрия является моей попыткой достичь некоего подобия внутреннего спокойствия. Или в более широком смысле, геометрия — это мой способ попытаться разобраться в нашей Вселенной и понять таинственные скрытые пространства, названные, в том числе, в мою честь.
Четырнадцатая глава
Конец геометрии?
Хотя геометрия сослужила нам хорошую службу, остались скрытые проблемы, которые предвещают нам неприятности в будущем. Чтобы убедиться в этом, необязательно отправляться в далекое путешествие, а достаточно дойти до ближайшего озера или пруда. А если в вашей местности нет озер, подойдут бассейн или ванна. Поверхность озера может выглядеть идеально гладкой в спокойный, безветренный день, но это иллюзия. Если посмотреть на поверхность с помощью прибора с высоким разрешением, то окажется, что она зубчатая, а не гладкая. Мы увидим, что поверхность фактически состоит из отдельных молекул воды, которые постоянно покачиваются, перемещаются внутри пруда и свободно проходят между поверхностью пруда и воздухом. С этой точки зрения поверхность не является статичной и хорошо определяемой. На самом деле вряд ли можно квалифицировать водную гладь как поверхность в том смысле, в каком мы обычно используем этот термин.
Аналогичная ситуация наблюдается с классической геометрией, поскольку, по мнению гарвардского физика Кумрун Вафы, она дает только приближенное, а не точное или фундаментальное описание природы. Хотя справедливости ради стоит сказать, что это приближенное описание служит хорошим фундаментом и почти безупречно описывает нашу Вселенную, за исключением планковского масштаба (10 -33см) — области, в которой на стандартную геометрию накладываются квантовые эффекты и выполнение простых измерений становится невозможным.
Главная трудность в решении задач на очень мелких масштабах связана с принципом неопределенности Гейзенберга, который делает невозможной локализацию отдельной точки или точную фиксацию расстояния между двумя точками. Поэтому объекты планковского размера не стоят на месте, а постоянно колеблются, изменяя свои параметры, включая местоположение, размер и кривизну. Если классическая геометрия говорит нам, что две плоскости пересекаются по линии, а три плоскости пересекаются в точке, то с квантовой точки зрения мы должны представить себе три плоскости, пересекающиеся в окрестности некоей сферы, которая охватывает область возможных положений для этой точки.
Для исследования Вселенной на уровне скрытых измерений или отдельных струн нам необходим новый вид геометрии, иногда называемой квантовой геометрией , способной работать как на самых больших, так и на самых маленьких масштабах, которые только можно вообразить. Геометрия такого рода должна быть совместима с общей теорией относительности на больших масштабах и квантовой механикой на малых масштабах и совпадать там, где обе теории пересекаются. По большей части квантовая геометрия пока не существует. Она гипотетична, хотя и важна, скорее надежда, чем реальность, название для поиска четко определенной математической теории. «Мы не знаем, как такая теория будет выглядеть или как она должна называться, — говорит Вафа. — Для меня не очевидно, что она должна называться геометрией». [280] Cumrun Vafa (Harvard University), interview with author, January 19, 2007.
Но независимо от названия, мы считаем, что геометрия, в том виде как она существует сейчас, исчерпала себя и ее необходимо заменить на что-то более мощное — на геометрию, которой мы еще не знаем. Это путь всех наук, как и должно быть, поскольку застой означает смерть.
«Мы всегда ищем области, в которых наука оказывается бессильной, — объясняет физик Амстердамского университета Роберт Дикграаф. — Геометрия тесно связана с теорией Эйнштейна, и когда теория Эйнштейна испытывает потрясения, то геометрию ждет та же судьба. В конечном счете, уравнения Эйнштейна необходимо заменить так же, как они в свое время заменили уравнения Ньютона, и геометрия пойдет тем же путем». [281] Robbert Dijkgraaf (University of Amsterdam), interview with author, February 8, 2007.
Но не будем перекладывать всю ответственность на геометрию, потому что проблема в большей степени связана с физикой, чем с математикой. Прежде всего, планковский масштаб, где начинаются все вышеупомянутые неприятности, вообще не является математической концепцией.
Читать дальше